Learning Pixel-level Semantic Affinity with Image-level Supervision for Weakly Supervised Semantic Segmentation, CVPR 2018

Overview

Learning Pixel-level Semantic Affinity with Image-level Supervision

This code is deprecated. Please see https://github.com/jiwoon-ahn/irn instead.

outline

Introduction

The code and trained models of:

Learning Pixel-level Semantic Affinity with Image-level Supervision for Weakly Supervised Semantic Segmentation, Jiwoon Ahn and Suha Kwak, CVPR 2018 [Paper]

We have developed a framework based on AffinityNet to generate accurate segmentation labels of training images given their image-level class labels only. A segmentation network learned with our synthesized labels outperforms previous state-of-the-arts by large margins on the PASCAL VOC 2012.

*Our code was first implemented in Tensorflow at the time of CVPR 2018 submssion, and later we migrated to PyTorch. Some trivial details (optimizer, channel size, and etc.) have been changed.

Citation

If you find the code useful, please consider citing our paper using the following BibTeX entry.

@InProceedings{Ahn_2018_CVPR,
author = {Ahn, Jiwoon and Kwak, Suha},
title = {Learning Pixel-Level Semantic Affinity With Image-Level Supervision for Weakly Supervised Semantic Segmentation},
booktitle = {The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {June},
year = {2018}
}

Prerequisite

  • Tested on Ubuntu 16.04, with Python 3.5, PyTorch 0.4, Torchvision 0.2.1, CUDA 9.0, and 1x NVIDIA TITAN X (Pascal).
  • The PASCAL VOC 2012 development kit: You also need to specify the path ('voc12_root') of your downloaded dev kit.
  • (Optional) If you want to try with the VGG-16 based network, PyCaffe and VGG-16 ImageNet pretrained weights [vgg16_20M.caffemodel]
  • (Optional) If you want to try with the ResNet-38 based network, Mxnet and ResNet-38 pretrained weights [ilsvrc-cls_rna-a1_cls1000_ep-0001.params]

Usage

1. Train a classification network to get CAMs.

python3 train_cls.py --lr 0.1 --batch_size 16 --max_epoches 15 --crop_size 448 --network [network.vgg16_cls | network.resnet38_cls] --voc12_root [your_voc12_root_folder] --weights [your_weights_file] --wt_dec 5e-4

2. Generate labels for AffinityNet by applying dCRF on CAMs.

python3 infer_cls.py --infer_list voc12/train_aug.txt --voc12_root [your_voc12_root_folder] --network [network.vgg16_cls | network.resnet38_cls] --weights [your_weights_file] --out_cam [desired_folder] --out_la_crf [desired_folder] --out_ha_crf [desired_folder]

(Optional) Check the accuracy of CAMs.

python3 infer_cls.py --infer_list voc12/val.txt --voc12_root [your_voc12_root_folder] --network network.resnet38_cls --weights res38_cls.pth --out_cam_pred [desired_folder]

3. Train AffinityNet with the labels

python3 train_aff.py --lr 0.1 --batch_size 8 --max_epoches 8 --crop_size 448 --voc12_root [your_voc12_root_folder] --network [network.vgg16_aff | network.resnet38_aff] --weights [your_weights_file] --wt_dec 5e-4 --la_crf_dir [your_output_folder] --ha_crf_dir [your_output_folder]

4. Perform Random Walks on CAMs

python3 infer_aff.py --infer_list [voc12/val.txt | voc12/train.txt] --voc12_root [your_voc12_root_folder] --network [network.vgg16_aff | network.resnet38_aff] --weights [your_weights_file] --cam_dir [your_output_folder] --out_rw [desired_folder]

Results and Trained Models

Class Activation Map

Model Train (mIoU) Val (mIoU)
VGG-16 48.9 46.6 [Weights]
ResNet-38 47.7 47.2 [Weights]
ResNet-38 48.0 46.8 CVPR submission

Random Walk with AffinityNet

Model alpha Train (mIoU) Val (mIoU)
VGG-16 4/16/32 59.6 54.0 [Weights]
ResNet-38 4/16/32 61.0 60.2 [Weights]
ResNet-38 4/16/24 58.1 57.0 CVPR submission

*beta=8, gamma=5, t=256 for all settings

Owner
Jiwoon Ahn
Deep Learning Researcher
Jiwoon Ahn
Transfer style api - An API to use with Tranfer Style App, where you can use two image and transfer the style

Transfer Style API It's an API to use with Tranfer Style App, where you can use

Brian Alejandro 1 Feb 13, 2022
Code from Daniel Lemire, A Better Alternative to Piecewise Linear Time Series Segmentation

PiecewiseLinearTimeSeriesApproximation code from Daniel Lemire, A Better Alternative to Piecewise Linear Time Series Segmentation, SIAM Data Mining 20

Daniel Lemire 21 Oct 27, 2022
DenseCLIP: Language-Guided Dense Prediction with Context-Aware Prompting

DenseCLIP: Language-Guided Dense Prediction with Context-Aware Prompting Created by Yongming Rao*, Wenliang Zhao*, Guangyi Chen, Yansong Tang, Zheng Z

Yongming Rao 321 Dec 27, 2022
(Preprint) Official PyTorch implementation of "How Do Vision Transformers Work?"

(Preprint) Official PyTorch implementation of "How Do Vision Transformers Work?"

xxxnell 656 Dec 30, 2022
Deep Reinforcement Learning for Multiplayer Online Battle Arena

MOBA_RL Deep Reinforcement Learning for Multiplayer Online Battle Arena Prerequisite Python 3 gym-derk Tensorflow 2.4.1 Dotaservice of TimZaman Seed R

Dohyeong Kim 32 Dec 18, 2022
A way to store images in YAML.

YAMLImg A way to store images in YAML. I made this after seeing Roadcrosser's JSON-G because it was too inspiring to ignore this opportunity. Installa

5 Mar 14, 2022
Learning to Segment Instances in Videos with Spatial Propagation Network

Learning to Segment Instances in Videos with Spatial Propagation Network This paper is available at the 2017 DAVIS Challenge website. Check our result

Jingchun Cheng 145 Sep 28, 2022
An OpenAI Gym environment for multi-agent car racing based on Gym's original car racing environment.

Multi-Car Racing Gym Environment This repository contains MultiCarRacing-v0 a multiplayer variant of Gym's original CarRacing-v0 environment. This env

Igor Gilitschenski 56 Nov 01, 2022
Dense Passage Retriever - is a set of tools and models for open domain Q&A task.

Dense Passage Retrieval Dense Passage Retrieval (DPR) - is a set of tools and models for state-of-the-art open-domain Q&A research. It is based on the

Meta Research 1.1k Jan 03, 2023
Continuum Learning with GEM: Gradient Episodic Memory

Gradient Episodic Memory for Continual Learning Source code for the paper: @inproceedings{GradientEpisodicMemory, title={Gradient Episodic Memory

Facebook Research 360 Dec 27, 2022
CondenseNet V2: Sparse Feature Reactivation for Deep Networks

CondenseNetV2 This repository is the official Pytorch implementation for "CondenseNet V2: Sparse Feature Reactivation for Deep Networks" paper by Le Y

Haojun Jiang 74 Dec 12, 2022
Continuous Query Decomposition for Complex Query Answering in Incomplete Knowledge Graphs

Continuous Query Decomposition This repository contains the official implementation for our ICLR 2021 (Oral) paper, Complex Query Answering with Neura

UCL Natural Language Processing 71 Dec 29, 2022
A selection of State Of The Art research papers (and code) on human locomotion (pose + trajectory) prediction (forecasting)

A selection of State Of The Art research papers (and code) on human trajectory prediction (forecasting). Papers marked with [W] are workshop papers.

Karttikeya Manglam 40 Nov 18, 2022
IJON is an annotation mechanism that analysts can use to guide fuzzers such as AFL.

IJON SPACE EXPLORER IJON is an annotation mechanism that analysts can use to guide fuzzers such as AFL. Using only a small (usually one line) annotati

Chair for Sys­tems Se­cu­ri­ty 146 Dec 16, 2022
NER for Indian languages

CL-NERIL: A Cross-Lingual Model for NER in Indian Languages Code for the paper - https://arxiv.org/abs/2111.11815 Setup Setup a virtual environment Th

Akshara P 0 Nov 24, 2021
Yolox-bytetrack-sample - Python sample of MOT (Multiple Object Tracking) using YOLOX and ByteTrack

yolox-bytetrack-sample YOLOXとByteTrackを用いたMOT(Multiple Object Tracking)のPythonサン

KazuhitoTakahashi 12 Nov 09, 2022
CTC segmentation python package

CTC segmentation CTC segmentation can be used to find utterances alignments within large audio files. This repository contains the ctc-segmentation py

Ludwig Kürzinger 217 Jan 04, 2023
Multi-View Radar Semantic Segmentation

Multi-View Radar Semantic Segmentation Paper Multi-View Radar Semantic Segmentation, ICCV 2021. Arthur Ouaknine, Alasdair Newson, Patrick Pérez, Flore

valeo.ai 37 Oct 25, 2022
Face Library is an open source package for accurate and real-time face detection and recognition

Face Library Face Library is an open source package for accurate and real-time face detection and recognition. The package is built over OpenCV and us

52 Nov 09, 2022
DeepFaceEditing: Deep Face Generation and Editing with Disentangled Geometry and Appearance Control

DeepFaceEditing: Deep Face Generation and Editing with Disentangled Geometry and Appearance Control One version of our system is implemented using the

260 Nov 28, 2022