The LaTeX and Python code for generating the paper, experiments' results and visualizations reported in each paper is available (whenever possible) in the paper's directory

Overview

CircleCI Github Actions Codecov Documentation Status Pypi Version Black Python Versions DOI

This repository contains the software implementation of most algorithms used or developed in my research. The LaTeX and Python code for generating the paper, experiments' results and visualizations reported in each paper is available (whenever possible) in the paper's directory.

Additionally, contributions at the algorithm level are available in the package mlresearch.

Installation

A Python distribution of version 3.8 or 3.9 is required to run this project. Due to the computational limitations of the free tiers in CI/CD platforms, currently we cannot ensure compatibility with earlier Python versions.

ML-Research requires:

  • numpy (>= 1.14.6)
  • pandas (>= 1.3.5)
  • sklearn (>= 1.0.0)
  • imblearn (>= 0.8.0)
  • rich (>= 10.16.1)
  • matplotlib (>= 2.2.3)
  • seaborn (>= 0.9.0)
  • rlearn (>= 0.2.1)
  • pytorch (>= 1.10.1)
  • torchvision (>= 0.11.2)
  • pytorch_lightning (>= 1.5.8)

User Installation

If you already have a working installation of numpy and scipy, the easiest way to install scikit-learn is using pip :

pip install -U ml-research

The documentation includes more detailed installation instructions.

Installing from source

The following commands should allow you to setup the development version of the project with minimal effort:

# Clone the project.
git clone https://github.com/joaopfonseca/ml-research.git
cd ml-research

# Create and activate an environment 
make environment 
conda activate mlresearch # Adapt this line accordingly if you're not running conda

# Install project requirements and the research package
pip install .[tests,docs]

Citing ML-Research

If you use ML-Research in a scientific publication, we would appreciate citations to the following paper:

@article{Fonseca2021,
  doi = {10.3390/RS13132619},
  url = {https://doi.org/10.3390/RS13132619},
  keywords = {SMOTE,active learning,artificial data generation,land use/land cover classification,oversampling},
  year = {2021},
  month = {jul},
  publisher = {Multidisciplinary Digital Publishing Institute},
  volume = {13},
  pages = {2619},
  author = {Fonseca, Joao and Douzas, Georgios and Bacao, Fernando},
  title = {{Increasing the Effectiveness of Active Learning: Introducing Artificial Data Generation in Active Learning for Land Use/Land Cover Classification}},
  journal = {Remote Sensing}
}
You might also like...
A collection of 100 Deep Learning images and visualizations
A collection of 100 Deep Learning images and visualizations

A collection of Deep Learning images and visualizations. The project has been developed by the AI Summer team and currently contains almost 100 images.

ManimML is a project focused on providing animations and visualizations of common machine learning concepts with the Manim Community Library.
ManimML is a project focused on providing animations and visualizations of common machine learning concepts with the Manim Community Library.

ManimML ManimML is a project focused on providing animations and visualizations of common machine learning concepts with the Manim Community Library.

Easily pull telemetry data and create beautiful visualizations for analysis.
Easily pull telemetry data and create beautiful visualizations for analysis.

This repository is a work in progress. Anything and everything is subject to change. Porpo Table of Contents Porpo Table of Contents General Informati

Multiple types of NN model optimization environments. It is possible to directly access the host PC GUI and the camera to verify the operation. Intel iHD GPU (iGPU) support. NVIDIA GPU (dGPU) support.
Multiple types of NN model optimization environments. It is possible to directly access the host PC GUI and the camera to verify the operation. Intel iHD GPU (iGPU) support. NVIDIA GPU (dGPU) support.

mtomo Multiple types of NN model optimization environments. It is possible to directly access the host PC GUI and the camera to verify the operation.

The pyrelational package offers a flexible workflow to enable active learning with as little change to the models and datasets as possible
The pyrelational package offers a flexible workflow to enable active learning with as little change to the models and datasets as possible

pyrelational is a python active learning library developed by Relation Therapeutics for rapidly implementing active learning pipelines from data management, model development (and Bayesian approximation), to creating novel active learning strategies.

Rayvens makes it possible for data scientists to access hundreds of data services within Ray with little effort.
Rayvens makes it possible for data scientists to access hundreds of data services within Ray with little effort.

Rayvens augments Ray with events. With Rayvens, Ray applications can subscribe to event streams, process and produce events. Rayvens leverages Apache

Memoized coduals - Shows that it is possible to implement reverse mode autodiff using a variation on the dual numbers called the codual numbers This repository contains the source code and data for reproducing results of Deep Continuous Clustering paper
This repository contains the source code and data for reproducing results of Deep Continuous Clustering paper

Deep Continuous Clustering Introduction This is a Pytorch implementation of the DCC algorithms presented in the following paper (paper): Sohil Atul Sh

Comments
  • Consider modifying default BYOL hyper-parameters for smaller batch sizes

    Consider modifying default BYOL hyper-parameters for smaller batch sizes

    Applicable to both BYOL and SimSiam: Some hyperparameters might need to be added. Some are hard-coded to the default values.

    Taken from the BYOL paper: Screenshot from 2022-03-18 17-54-43

    opened by joaopfonseca 1
  • Remove computer vision models, augmentations and datasets

    Remove computer vision models, augmentations and datasets

    They will be removed in the next release since:

    1. I'm not going to used these methods anytime soon and I don't have the time to test them properly
    2. They are out of scope of the library. It is meant to be used for machine learning techniques, focused on tabular data. In the feature it may be worth considering the development of another library for computer vision, for example.
    3. Setting Pytorch as a dependency for a reduced part of the library isn't particularly efficient.
    wontfix 
    opened by joaopfonseca 0
  • Host all raw data from datasets submodule elsewhere

    Host all raw data from datasets submodule elsewhere

    With Python 3.11, downloading some datasets returns an SSL error (when unsafe legacy renegotiation disabled). It happens when the server doesn't support "RFC 5746 secure renegotiation" and the client is using OpenSSL 3, which enforces that standard by default (source).

    Hosting the raw data elsewhere should fix this issue.

    bug 
    opened by joaopfonseca 0
  • Review and add examples to documentation

    Review and add examples to documentation

    The readthedocs page is getting a bit outdated:

    • [x] Add support for Python 3.10
    • [ ] Add support for Python 3.11
    • [ ] Check for missing, deleted or renamed functions and objects
    • [ ] Review content as a whole
    • [ ] Add examples to documentation
    • [ ] Add dependency groups to documentation
    • [ ] README contains dependencies that will no longer be used
    documentation 
    opened by joaopfonseca 0
Releases(v0.4a2)
  • v0.4a2(Jan 2, 2023)

    NOTE: This pre-release contains implementations of algorithms for Self-supervised learning (BYOL and SimSiam). This release also contains objects to download image data from Pytorch and general definitions for image augmentations. They will be removed in the next release since:

    1. I'm not going to used these methods anytime soon and I don't have the time to test them properly
    2. They are out of scope of the library. It is meant to be used for machine learning techniques, focused on tabular data. In the feature it may be worth considering the development of another library for computer vision, for example.
    3. Setting Pytorch as a dependency for a reduced part of the library isn't particularly efficient.

    Full Changelog: https://github.com/joaopfonseca/ml-research/compare/v0.4a1...v0.4a2

    Source code(tar.gz)
    Source code(zip)
  • v0.4a1(Apr 14, 2022)

  • v0.3.4(Feb 14, 2022)

  • v0.3.3(Feb 14, 2022)

  • v0.3.2(Feb 14, 2022)

  • v0.3.1(Feb 14, 2022)

  • v0.3.0(Feb 14, 2022)

  • v0.2.1(Feb 14, 2022)

  • v0.2.0(Feb 14, 2022)

  • 0.1.0(Feb 14, 2022)

Owner
João Fonseca
PhD student | Researcher | Invited lecturer @ NOVA Information Management School
João Fonseca
Stacs-ci - A set of modules to enable integration of STACS with commonly used CI / CD systems

Static Token And Credential Scanner CI Integrations What is it? STACS is a YARA

STACS 18 Aug 04, 2022
PGPortfolio: Policy Gradient Portfolio, the source code of "A Deep Reinforcement Learning Framework for the Financial Portfolio Management Problem"(https://arxiv.org/pdf/1706.10059.pdf).

This is the original implementation of our paper, A Deep Reinforcement Learning Framework for the Financial Portfolio Management Problem (arXiv:1706.1

Zhengyao Jiang 1.5k Dec 29, 2022
A general framework for inferring CNNs efficiently. Reduce the inference latency of MobileNet-V3 by 1.3x on an iPhone XS Max without sacrificing accuracy.

GFNet-Pytorch (NeurIPS 2020) This repo contains the official code and pre-trained models for the glance and focus network (GFNet). Glance and Focus: a

Rainforest Wang 169 Oct 28, 2022
Neural-Pull: Learning Signed Distance Functions from Point Clouds by Learning to Pull Space onto Surfaces(ICML 2021)

Neural-Pull: Learning Signed Distance Functions from Point Clouds by Learning to Pull Space onto Surfaces(ICML 2021) This repository contains the code

149 Dec 15, 2022
Official Code Implementation of the paper : XAI for Transformers: Better Explanations through Conservative Propagation

Official Code Implementation of The Paper : XAI for Transformers: Better Explanations through Conservative Propagation For the SST-2 and IMDB expermin

Ameen Ali 23 Dec 30, 2022
Human-Pose-and-Motion History

Human Pose and Motion Scientist Approach Eadweard Muybridge, The Galloping Horse Portfolio, 1887 Etienne-Jules Marey, Descent of Inclined Plane, Chron

Daito Manabe 47 Dec 16, 2022
The code for the CVPR 2021 paper Neural Deformation Graphs, a novel approach for globally-consistent deformation tracking and 3D reconstruction of non-rigid objects.

Neural Deformation Graphs Project Page | Paper | Video Neural Deformation Graphs for Globally-consistent Non-rigid Reconstruction Aljaž Božič, Pablo P

Aljaz Bozic 134 Dec 16, 2022
Potato Disease Classification - Training, Rest APIs, and Frontend to test.

Potato Disease Classification Setup for Python: Install Python (Setup instructions) Install Python packages pip3 install -r training/requirements.txt

codebasics 95 Dec 21, 2022
Code repo for "Transformer on a Diet" paper

Transformer on a Diet Reference: C Wang, Z Ye, A Zhang, Z Zhang, A Smola. "Transformer on a Diet". arXiv preprint arXiv (2020). Installation pip insta

cgraywang 31 Sep 26, 2021
Weighted QMIX: Expanding Monotonic Value Function Factorisation

This repo contains the cleaned-up code that was used in "Weighted QMIX: Expanding Monotonic Value Function Factorisation"

whirl 82 Dec 29, 2022
TART - A PyTorch implementation for Transition Matrix Representation of Trees with Transposed Convolutions

TART This project is a PyTorch implementation for Transition Matrix Representati

Lee Sael 2 Jan 19, 2022
Contrastive learning of Class-agnostic Activation Map for Weakly Supervised Object Localization and Semantic Segmentation (CVPR 2022)

CCAM (Unsupervised) Code repository for our paper "CCAM: Contrastive learning of Class-agnostic Activation Map for Weakly Supervised Object Localizati

Computer Vision Insitute, SZU 113 Dec 27, 2022
Implementation of gaze tracking and demo

Predicting Customer Demand by Using Gaze Detecting and Object Tracking This project is the integration of gaze detecting and object tracking. Predict

2 Oct 20, 2022
Implementation of H-UCRL Algorithm

Implementation of H-UCRL Algorithm This repository is an implementation of the H-UCRL algorithm introduced in Curi, S., Berkenkamp, F., & Krause, A. (

Sebastian Curi 25 May 20, 2022
Use MATLAB to simulate the signal and extract features. Use PyTorch to build and train deep network to do spectrum sensing.

Deep-Learning-based-Spectrum-Sensing Use MATLAB to simulate the signal and extract features. Use PyTorch to build and train deep network to do spectru

10 Dec 14, 2022
This repository is a basic Machine Learning train & validation Template (Using PyTorch)

pytorch_ml_template This repository is a basic Machine Learning train & validation Template (Using PyTorch) TODO Markdown 사용법 Build Docker 사용법 Anacond

1 Sep 15, 2022
Get started learning C# with C# notebooks powered by .NET Interactive and VS Code.

.NET Interactive Notebooks for C# Welcome to the home of .NET interactive notebooks for C#! How to Install Download the .NET Coding Pack for VS Code f

.NET Platform 425 Dec 25, 2022
PyTorch implementation of EfficientNetV2

[NEW!] Check out our latest work involution accepted to CVPR'21 that introduces a new neural operator, other than convolution and self-attention. PyTo

Duo Li 375 Jan 03, 2023
StarGAN v2 - Official PyTorch Implementation (CVPR 2020)

StarGAN v2 - Official PyTorch Implementation StarGAN v2: Diverse Image Synthesis for Multiple Domains Yunjey Choi*, Youngjung Uh*, Jaejun Yoo*, Jung-W

Clova AI Research 3.1k Jan 09, 2023
Code for Motion Representations for Articulated Animation paper

Motion Representations for Articulated Animation This repository contains the source code for the CVPR'2021 paper Motion Representations for Articulat

Snap Research 851 Jan 09, 2023