Equivariant CNNs for the sphere and SO(3) implemented in PyTorch

Related tags

Deep Learnings2cnn
Overview

⚠️ ⚠️ This code is old and does not support the last versions of pytorch! Especially since the change in the fft interface. ⚠️ ⚠️

Spherical CNNs

Equivariant CNNs for the sphere and SO(3) implemented in PyTorch

Equivariance

Overview

This library contains a PyTorch implementation of the rotation equivariant CNNs for spherical signals (e.g. omnidirectional images, signals on the globe) as presented in [1]. Equivariant networks for the plane are available here.

Dependencies

(commands to install all the dependencies on a new conda environment)

conda create --name cuda9 python=3.6 
conda activate cuda9

# s2cnn deps
#conda install pytorch torchvision cuda90 -c pytorch # get correct command line at http://pytorch.org/
conda install -c anaconda cupy  
pip install pynvrtc joblib

# lie_learn deps
conda install -c anaconda cython  
conda install -c anaconda requests  

# shrec17 example dep
conda install -c anaconda scipy  
conda install -c conda-forge rtree shapely  
conda install -c conda-forge pyembree  
pip install "trimesh[easy]"  

Installation

To install, run

$ python setup.py install

Usage

Please have a look at the examples.

Please cite [1] in your work when using this library in your experiments.

Design choices for Spherical CNN Architectures

Spherical CNNs come with different choices of grids and grid hyperparameters which are on the first look not obviously related to those of conventional CNNs. The s2_near_identity_grid and so3_near_identity_grid are the preferred choices since they correspond to spatially localized kernels, defined at the north pole and rotated over the sphere via the action of SO(3). In contrast, s2_equatorial_grid and so3_equatorial_grid define line-like (or ring-like) kernels around the equator.

To clarify the possible parameter choices for s2_near_identity_grid:

max_beta:

Adapts the size of the kernel as angle measured from the north pole. Conventional CNNs on flat space usually use a fixed kernel size but pool the signal spatially. This spatial pooling gives the kernels in later layers an effectively increased field of view. One can emulate a pooling by a factor of 2 in spherical CNNs by decreasing the signal bandwidth by 2 and increasing max_beta by 2.

n_beta:

Number of rings of the kernel around the equator, equally spaced in [β=0, β=max_beta]. The choice n_beta=1 corresponds to a small 3x3 kernel in conv2d since in both cases the resulting kernel consists of one central pixel and one ring around the center.

n_alpha:

Gives the number of learned parameters of the rings around the pole. These values are per default equally spaced on the azimuth. A sensible number of values depends on the bandwidth and max_beta since a higher resolution or spatial extent allow to sample more fine kernels without producing aliased results. In practice this value is typically set to a constant, low value like 6 or 8. A reduced bandwidth of the signal is thereby counteracted by an increased max_beta to emulate spatial pooling.

The so3_near_identity_grid has two additional parameters max_gamma and n_gamma. SO(3) can be seen as a (principal) fiber bundle SO(3)→S² with the sphere S² as base space and fiber SO(2) attached to each point. The additional parameters control the grid on the fiber in the following way:

max_gamma:

The kernel spans over the fiber SO(2) between γ∈[0, max_gamma]. The fiber SO(2) encodes the kernel responses for every sampled orientation at a given position on the sphere. Setting max_gamma≨2π results in the kernel not seeing the responses of all kernel orientations simultaneously and is in general unfavored. Steerable CNNs [3] usually always use max_gamma=2π.

n_gamma:

Number of learned parameters on the fiber. Typically set equal to n_alpha, i.e. to a low value like 6 or 8.

See the deep model of the MNIST example for an example of how to adapt these parameters over layers.

Feedback

For questions and comments, feel free to contact us: geiger.mario (gmail), taco.cohen (gmail), jonas (argmin.xyz).

License

MIT

References

[1] Taco S. Cohen, Mario Geiger, Jonas Köhler, Max Welling, Spherical CNNs. International Conference on Learning Representations (ICLR), 2018.

[2] Taco S. Cohen, Mario Geiger, Jonas Köhler, Max Welling, Convolutional Networks for Spherical Signals. ICML Workshop on Principled Approaches to Deep Learning, 2017.

[3] Taco S. Cohen, Mario Geiger, Maurice Weiler, Intertwiners between Induced Representations (with applications to the theory of equivariant neural networks), ArXiv preprint 1803.10743, 2018.

Owner
Jonas Köhler
PhD student @noegroup - Research Scientist Intern @deepmind
Jonas Köhler
Official PaddlePaddle implementation of Paint Transformer

Paint Transformer: Feed Forward Neural Painting with Stroke Prediction [Paper] [Paddle Implementation] Update We have optimized the serial inference p

TianweiLin 284 Dec 31, 2022
[Link]deep_portfolo - Use Reforcemet earg ad Supervsed learg to Optmze portfolo allocato []

rl_portfolio This Repository uses Reinforcement Learning and Supervised learning to Optimize portfolio allocation. The goal is to make profitable agen

Deepender Singla 165 Dec 02, 2022
A collection of metrics for evaluating timbre dissimilarity using the TorchMetrics API

Timbre Dissimilarity Metrics A collection of metrics for evaluating timbre dissimilarity using the TorchMetrics API Installation pip install -e . Usag

Ben Hayes 21 Jan 05, 2022
QSYM: A Practical Concolic Execution Engine Tailored for Hybrid Fuzzing

QSYM: A Practical Concolic Execution Engine Tailored for Hybrid Fuzzing Environment Tested on Ubuntu 14.04 64bit and 16.04 64bit Installation # disabl

gts3.org (<a href=[email protected])"> 581 Dec 30, 2022
BanditPAM: Almost Linear-Time k-Medoids Clustering

BanditPAM: Almost Linear-Time k-Medoids Clustering This repo contains a high-performance implementation of BanditPAM from BanditPAM: Almost Linear-Tim

254 Dec 12, 2022
Unsupervised Representation Learning via Neural Activation Coding

Neural Activation Coding This repository contains the code for the paper "Unsupervised Representation Learning via Neural Activation Coding" published

yookoon park 5 May 26, 2022
U-Net: Convolutional Networks for Biomedical Image Segmentation

Deep Learning Tutorial for Kaggle Ultrasound Nerve Segmentation competition, using Keras This tutorial shows how to use Keras library to build deep ne

Yihui He 401 Nov 21, 2022
VisualGPT: Data-efficient Adaptation of Pretrained Language Models for Image Captioning

VisualGPT Our Paper VisualGPT: Data-efficient Adaptation of Pretrained Language Models for Image Captioning Main Architecture of Our VisualGPT Downloa

Vision CAIR Research Group, KAUST 140 Dec 28, 2022
On Evaluation Metrics for Graph Generative Models

On Evaluation Metrics for Graph Generative Models Authors: Rylee Thompson, Boris Knyazev, Elahe Ghalebi, Jungtaek Kim, Graham Taylor This is the offic

13 Jan 07, 2023
CT-Net: Channel Tensorization Network for Video Classification

[ICLR2021] CT-Net: Channel Tensorization Network for Video Classification @inproceedings{ li2021ctnet, title={{\{}CT{\}}-Net: Channel Tensorization Ne

33 Nov 15, 2022
Sound Event Detection with FilterAugment

Sound Event Detection with FilterAugment Official implementation of Heavily Augmented Sound Event Detection utilizing Weak Predictions (DCASE2021 Chal

43 Aug 28, 2022
This is a collection of our NAS and Vision Transformer work.

This is a collection of our NAS and Vision Transformer work.

Microsoft 828 Dec 28, 2022
style mixing for animation face

An implementation of StyleGAN on Animation dataset. Install git clone https://github.com/MorvanZhou/anime-StyleGAN cd anime-StyleGAN pip install -r re

Morvan 46 Nov 30, 2022
Code for "The Box Size Confidence Bias Harms Your Object Detector"

The Box Size Confidence Bias Harms Your Object Detector - Code Disclaimer: This repository is for research purposes only. It is designed to maintain r

Johannes G. 24 Dec 07, 2022
CPT: A Pre-Trained Unbalanced Transformer for Both Chinese Language Understanding and Generation

CPT This repository contains code and checkpoints for CPT. CPT: A Pre-Trained Unbalanced Transformer for Both Chinese Language Understanding and Gener

fastNLP 341 Dec 29, 2022
Performant, differentiable reinforcement learning

deluca Performant, differentiable reinforcement learning Notes This is pre-alpha software and is undergoing a number of core changes. Updates to follo

Google 114 Dec 27, 2022
Physics-Informed Neural Networks (PINN) and Deep BSDE Solvers of Differential Equations for Scientific Machine Learning (SciML) accelerated simulation

NeuralPDE NeuralPDE.jl is a solver package which consists of neural network solvers for partial differential equations using scientific machine learni

SciML Open Source Scientific Machine Learning 680 Jan 02, 2023
《DeepViT: Towards Deeper Vision Transformer》(2021)

DeepViT This repo is the official implementation of "DeepViT: Towards Deeper Vision Transformer". The repo is based on the timm library (https://githu

109 Dec 02, 2022
SGPT: Multi-billion parameter models for semantic search

SGPT: Multi-billion parameter models for semantic search This repository contains code, results and pre-trained models for the paper SGPT: Multi-billi

Niklas Muennighoff 182 Dec 29, 2022
Locally Enhanced Self-Attention: Rethinking Self-Attention as Local and Context Terms

LESA Introduction This repository contains the official implementation of Locally Enhanced Self-Attention: Rethinking Self-Attention as Local and Cont

Chenglin Yang 20 Dec 31, 2021