Postgres full text search options (tsearch, trigram) examples

Overview

postgres-full-text-search

Postgres full text search options (tsearch, trigram) examples.

Create DB

>> CREATE DATABASE ftdb;

To feed db with an example dataset (dataset.txt, 100k rows, 15 words each one) I used python init_db.py script.

Full text search using simple ilike

>> EXPLAIN ANALYZE
   SELECT text, language
   FROM public.document
   WHERE
      text ilike '%field%'
      AND text ilike '%window%'
      AND text ilike '%lamp%'
      AND text ilike '%research%'
      AND language = 'en'
    LIMIT 1;
                                                                  QUERY PLAN
----------------------------------------------------------------------------------------------------------------------------------------------
 Limit  (cost=0.00..3734.02 rows=1 width=105) (actual time=87.473..87.474 rows=0 loops=1)
   ->  Seq Scan on document  (cost=0.00..3734.02 rows=1 width=105) (actual time=87.466..87.466 rows=0 loops=1)
         Filter: ((text ~~* '%field%'::text) AND (text ~~* '%window%'::text) AND (text ~~* '%lamp%'::text) AND (text ~~* '%research%'::text))
         Rows Removed by Filter: 100001
 Planning Time: 2.193 ms
 Execution Time: 87.500 ms

Full text search using ilike supported by trigram index

What is a trigram? See this example:

>> CREATE EXTENSION pg_trgm;
CREATE EXTENSION
>> select show_trgm('fielded');
                show_trgm
-----------------------------------------
 {"  f"," fi",ded,"ed ",eld,fie,iel,lde}

We can improve ilike performance using trigram index, e.g. gin_trgm_ops.

>> CREATE INDEX  ix_document_text_trigram ON document USING gin (text gin_trgm_ops) where language = 'en';
CREATE INDEX

>> EXPLAIN ANALYZE SELECT text, language
   FROM public.document
   WHERE
      text ilike '%field%'
      AND text ilike '%window%'
      AND text ilike '%lamp%'
      AND text ilike '%research%'
      AND language = 'en'
    LIMIT 1;
                                                                                       QUERY PLAN
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
 Limit  (cost=176.00..180.02 rows=1 width=105) (actual time=1.473..1.474 rows=0 loops=1)
   ->  Bitmap Heap Scan on document  (cost=176.00..180.02 rows=1 width=105) (actual time=1.470..1.471 rows=0 loops=1)
         Recheck Cond: ((text ~~* '%field%'::text) AND (text ~~* '%window%'::text) AND (text ~~* '%lamp%'::text) AND (text ~~* '%research%'::text) AND ((language)::text = 'en'::text))
         ->  Bitmap Index Scan on ix_document_text_trigram  (cost=0.00..176.00 rows=1 width=0) (actual time=1.466..1.466 rows=0 loops=1)
               Index Cond: ((text ~~* '%field%'::text) AND (text ~~* '%window%'::text) AND (text ~~* '%lamp%'::text) AND (text ~~* '%research%'::text))
 Planning Time: 2.389 ms
 Execution Time: 1.524 ms

Create non-default language configuration for tsearch full text search

Postgres does not provide support for many languages by default. However, you can setup the configuration quite easily. You just need additional dictionary files. Here is an example for polish language. Polish dictionary files can be downloaded from: https://github.com/judehunter/polish-tsearch.

polish.affix, polish.stop and polish.dict files should be copied to postgresql tsearch_data location, e.g. /usr/share/postgresql/13/tsearch_data.

There also must be created a configuration (see the docs) inside database:

>> DROP TEXT SEARCH DICTIONARY IF EXISTS polish_hunspell CASCADE;
   CREATE TEXT SEARCH DICTIONARY polish_hunspell (
    TEMPLATE  = ispell,
    DictFile  = polish,
    AffFile   = polish,
    StopWords = polish
  );
  CREATE TEXT SEARCH CONFIGURATION public.polish (
    COPY = pg_catalog.english
  );
  ALTER TEXT SEARCH CONFIGURATION polish
    ALTER MAPPING
    FOR
        asciiword, asciihword, hword_asciipart,  word, hword, hword_part
    WITH
        polish_hunspell, simple;

You need these files and configuration because full text search engine uses lexeme comparing to find best matches (both query pattern and stored text are lexemized):

>> SELECT to_tsquery('english', 'fielded'), to_tsvector('english', text)
   FROM document
   LIMIT 1;
 to_tsquery |                                                                    to_tsvector
------------+----------------------------------------------------------------------------------------------------------------------------------------------------
 'field'    | '19':16 'bat':12 'dead':8 'degre':1 'depth':5 'field':15 'lamp':13 'men':6 'put':14 'ranch':2 'tall':4 'time':3 'underlin':11 'wast':10 'window':9

If you cannot provide dictionary files you can use full text in "simple" form (without transformation to lexeme):

>> SELECT to_tsquery('simple', 'fielded'), to_tsvector('simple', text)
   FROM document
   LIMIT 1;
 to_tsquery |                                                                             to_tsvector
------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------
 'fielded'  | '19':16 'bat':12 'below':7 'dead':8 'degree':1 'depth':5 'field':15 'lamp':13 'men':6 'putting':14 'ranch':2 'tall':4 'time':3 'underline':11 'waste':10 'window':9

Tsearch full text search without stored index

>> EXPLAIN ANALYZE SELECT text, language
   FROM public.document
   WHERE to_tsvector('english', text) @@ to_tsquery('english', 'fielded & window & lamp & depth & test ')
   LIMIT 1;
                                                                                  QUERY PLAN
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
 Limit  (cost=1000.00..18298.49 rows=1 width=103) (actual time=489.802..491.352 rows=0 loops=1)
   ->  Gather  (cost=1000.00..18298.49 rows=1 width=103) (actual time=489.800..491.349 rows=0 loops=1)
         Workers Planned: 1
         Workers Launched: 1
         ->  Parallel Seq Scan on document  (cost=0.00..17298.39 rows=1 width=103) (actual time=486.644..486.644 rows=0 loops=2)
               Filter: (((language)::text = 'en'::text) AND (to_tsvector('english'::regconfig, text) @@ '''field'' & ''window'' & ''lamp'' & ''depth'' & ''test'''::tsquery))
               Rows Removed by Filter: 50000
 Planning Time: 0.272 ms
 Execution Time: 491.376 ms
(9 rows)

Tsearch full text search with stored partial index ('en')

>> CREATE INDEX ix_en_document_tsvector_text ON public.document USING gin (to_tsvector('english'::regconfig, text)) WHERE language = 'en';
CREATED INDEX
>> EXPLAIN ANALYZE SELECT text, language
   FROM public.document
   WHERE to_tsvector('english', text) @@ to_tsquery('english', 'fielded & window & lamp & depth & test ')
   LIMIT 1;
                                                               QUERY PLAN
----------------------------------------------------------------------------------------------------------------------------------------
 Limit  (cost=1000.00..18151.43 rows=1 width=103) (actual time=487.120..488.569 rows=0 loops=1)
   ->  Gather  (cost=1000.00..18151.43 rows=1 width=103) (actual time=487.117..488.567 rows=0 loops=1)
         Workers Planned: 1
         Workers Launched: 1
         ->  Parallel Seq Scan on document  (cost=0.00..17151.33 rows=1 width=103) (actual time=484.418..484.419 rows=0 loops=2)
               Filter: (to_tsvector('english'::regconfig, text) @@ '''field'' & ''window'' & ''lamp'' & ''depth'' & ''test'''::tsquery)
               Rows Removed by Filter: 50000
 Planning Time: 0.193 ms
 Execution Time: 488.596 ms

No difference? Index has not been used... Why is it not working? Ohh, looks to the partial index docs:

However, keep in mind that the predicate must match the conditions used in the queries that are supposed to benefit from the index. To be precise, a partial index can be used in a query only if the system can recognize that the WHERE condition of the query mathematically implies the predicate of the index. PostgreSQL does not have a sophisticated theorem prover that can recognize mathematically equivalent expressions that are written in different forms. (Not only is such a general theorem prover extremely difficult to create, it would probably be too slow to be of any real use.) The system can recognize simple inequality implications, for example "x < 1" implies "x < 2"; otherwise the predicate condition must exactly match part of the query's WHERE condition or the index will not be recognized as usable. Matching takes place at query planning time, not at run time. As a result, parameterized query clauses do not work with a partial index.

We have to add to query a condition that was used to create partial index: document.language = 'en':

>> EXPLAIN ANALYZE SELECT text, language
   FROM public.document
   WHERE
      to_tsvector('english', text) @@ to_tsquery('english', 'fielded & window & lamp & depth & test ')
      AND language = 'en'
   LIMIT 1;                                                                           QUERY PLAN
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
 Limit  (cost=64.00..68.27 rows=1 width=103) (actual time=0.546..0.548 rows=0 loops=1)
   ->  Bitmap Heap Scan on document  (cost=64.00..68.27 rows=1 width=103) (actual time=0.544..0.545 rows=0 loops=1)
         Recheck Cond: ((to_tsvector('english'::regconfig, text) @@ '''field'' & ''window'' & ''lamp'' & ''depth'' & ''test'''::tsquery) AND ((language)::text = 'en'::text))
         ->  Bitmap Index Scan on ix_en_document_tsvector_text  (cost=0.00..64.00 rows=1 width=0) (actual time=0.540..0.540 rows=0 loops=1)
               Index Cond: (to_tsvector('english'::regconfig, text) @@ '''field'' & ''window'' & ''lamp'' & ''depth'' & ''test'''::tsquery)
 Planning Time: 0.244 ms
 Execution Time: 0.590 ms

Tsearch full text search with partial words

>> EXPLAIN ANALYZE SELECT text, language
   FROM public.document
   WHERE
      to_tsvector('english', text) @@ to_tsquery('english', 'fielded & window & l:*')
      AND language = 'en'
   LIMIT 1;
                                                                   QUERY PLAN
------------------------------------------------------------------------------------------------------------------------------------------------
 Bitmap Heap Scan on document  (cost=168.00..172.27 rows=1 width=102) (actual time=5.207..5.210 rows=4 loops=1)
   Recheck Cond: ((to_tsvector('english'::regconfig, text) @@ '''field'' & ''window'' & ''l'':*'::tsquery) AND ((language)::text = 'en'::text))
   Heap Blocks: exact=4
   ->  Bitmap Index Scan on ix_en_document_tsvector_text  (cost=0.00..168.00 rows=1 width=0) (actual time=5.202..5.202 rows=4 loops=1)
         Index Cond: (to_tsvector('english'::regconfig, text) @@ '''field'' & ''window'' & ''l'':*'::tsquery)
 Planning Time: 0.240 ms
 Execution Time: 5.240 ms

>> SELECT id,  text
   FROM public.document
   WHERE
      to_tsvector('english', text) @@ to_tsquery('english', 'fielded & window & l:*')
      AND language = 'en'
   LIMIT 20;
  id   |                                                   text
-------+-----------------------------------------------------------------------------------------------------------
     1 | degree ranch time tall depth men below dead window waste underline bat lamp putting field               +
 20152 | Law pony follow memory star whatever window sets oxygen longer word whom glass field actual              +
 21478 | Dried symbol willing design managed shade window pick share faster education drive field land everybody  +
 30293 | Pencil seen engineer labor image entire smallest serve field should riding smaller window imagine traffic+

Tsearch full text search results ranking

>> SELECT
     id,
     ts_rank_cd(to_tsvector('english', text), to_tsquery('english', 'fielded & wind:*')) rank,
     text
    FROM public.document
    WHERE to_tsvector('english', text) @@ to_tsquery('english', 'fielded & wind:*')
    ORDER BY rank DESC
    LIMIT 20;
   id   |    rank     |                                                   text
--------+-------------+-----------------------------------------------------------------------------------------------------------
 100002 |         0.1 | fielded window
   9376 |        0.05 | Own mouse girl effect surprise physical newspaper forgot eat upper field element window simply unhappy   +
  96597 |        0.05 | Opinion fastened pencil rear more theory size window heading field understanding farm up position attack +
  44626 | 0.033333335 | Symbol each halfway window swam spider field page shinning donkey chose until cow cabin congress         +
  80922 | 0.033333335 | Victory famous field shelter girl wind adventure he divide rear tip few studied ruler judge              +
  30293 |       0.025 | Pencil seen engineer labor image entire smallest serve field should riding smaller window imagine traffic+
      1 | 0.016666668 | degree ranch time tall depth men below dead window waste underline bat lamp putting field               +
  21478 | 0.016666668 | Dried symbol willing design managed shade window pick share faster education drive field land everybody  +
  60059 | 0.016666668 | However hungry make proud kids come willing field officer row above highest round wind mile              +
  26001 | 0.014285714 | Earth earlier pocket might sense window way frog fire court family mouth field somebody recognize        +
  20152 | 0.014285714 | Law pony follow memory star whatever window sets oxygen longer word whom glass field actual              +
  37470 |      0.0125 | Farm weight balloon buried wind water donkey grain pig week should damage field was he                   +
  49433 |        0.01 | Wind scientist leaving atom year bad child drink shore spirit field facing indicate wagon here           +
  37851 | 0.007142857 | Field cloud you wife rhythm upward applied weigh continued property replace ahead forgotten trip window  +

text='fielded window' record was added manually to show best match result.

GIST vs GIN

We have created GIN index. But there is also GIST index option. Which one is better? It depends...

>> EXPLAIN ANALYZE SELECT text, language
   FROM public.document
   WHERE
      to_tsvector('english', text) @@ to_tsquery('english', 'fielded & window & lamp & depth & test ')
      AND language = 'en'
   LIMIT 1;
                                                                  QUERY PLAN
-----------------------------------------------------------------------------------------------------------------------------------------------
 Limit  (cost=0.28..8.30 rows=1 width=103) (actual time=2.699..2.700 rows=0 loops=1)
   ->  Index Scan using ix_en_document_tsvector_text on document  (cost=0.28..8.30 rows=1 width=103) (actual time=2.697..2.697 rows=0 loops=1)
         Index Cond: (to_tsvector('english'::regconfig, text) @@ '''field'' & ''window'' & ''lamp'' & ''depth'' & ''test'''::tsquery)
 Planning Time: 0.274 ms
 Execution Time: 2.730 ms

GIN seems to be a little bit faster. I don't think I could explain it better than the docs already does:

In choosing which index type to use, GiST or GIN, consider these performance differences:

  • GIN index lookups are about three times faster than GiST
  • GIN indexes take about three times longer to build than GiST
  • GIN indexes are moderately slower to update than GiST indexes, but about 10 times slower if fast-update support was disabled (see Section 58.4.1 for details)
  • GIN indexes are two-to-three times larger than GiST indexes
Owner
Jarosław Orzeł
Backend developer with special interest in software design, architecture and system modelling.
Jarosław Orzeł
Manage your sqlite database very easy (like django) ...

Manage your sqlite database very easy (like django) ...

aWolver 1 Feb 09, 2022
This repo contains the backend of the KMK project

KMK Backend This repository contains the backend part of the KMK project Demo Watch it on Youtube Getting started Pre-commit hooks After you cloned th

21 Nov 26, 2022
LaikaDB, banco de dados para projetos simples.

LaikaDB LaikaDB é um banco de dados noSQL para uso local e simples, onde você pode realizar gravações e leituras de forma eficiente e simples. Todos o

Jaedson Silva 0 Jun 24, 2022
A Modular MWDB Utility to Collect Fresh Malware Samples

MWDB Feeds A Modular MWDB Utility to Collect Fresh Malware Samples This project is FREE as in FREE 🍺 , use it commercially, privately or however you

c3rb3ru5 32 Jul 07, 2022
This is a simple graph database in SQLite, inspired by

This is a simple graph database in SQLite, inspired by "SQLite as a document database".

Denis Papathanasiou 1.2k Jan 03, 2023
pickleDB is an open source key-value store using Python's json module.

pickleDB pickleDB is lightweight, fast, and simple database based on the json module. And it's BSD licensed! pickleDB is Fun import pickledb

Harrison Erd 738 Jan 04, 2023
securedb is a fast and lightweight Python framework to easily interact with JSON-based encrypted databases.

securedb securedb is a Python framework that lets you work with encrypted JSON databases. Features: newkey() to generate an encryption key write(key,

Filippo Romani 2 Nov 23, 2022
Connect Django Project to PostgreSQL

An application for learning things with creating quizzes and flashcards.Django, PostgresSQL are used for this project.

Cena Ashoori 1 Jan 25, 2022
Decentralised graph database management system

Decentralised graph database management system To get started clone the repo, and run the command below. python3 database.py Now, create a new termina

Omkar Patil 2 Apr 18, 2022
ChaozzDBPy - A python implementation based on the original ChaozzDB from Chaozznl with some new features

ChaozzDBPy About ChaozzDBPy is a python implementation based on the original Cha

Igor Iglesias 1 May 25, 2022
This project is related to a No-SQL database, whose data are referred to autoctone botanic species

This project is related to a No-SQL database, whose data are referred to autoctone botanic species. The final goal is creating a function that performs the estimation of the ornamental value, given t

Amatofrancesco99 2 Mar 08, 2022
A NoSQL database made in python.

CookieDB A NoSQL database made in python.

cookie 1 Nov 30, 2022
Migrate data from SQL to NoSQL easily

Migrate data from SQL to NoSQL easily Installation 💯 pip install sql2nosql --upgrade Dependencies 📢 For the package to work, it first needs "clients

Facundo Padilla 43 Mar 26, 2022
Metrics-advisor - Analyze reshaped metrics from TiDB cluster Prometheus and give some advice about anomalies and correlation.

metrics-advisor Analyze reshaped metrics from TiDB cluster Prometheus and give some advice about anomalies and correlation. Team freedeaths mashenjun

3 Jan 07, 2022
Code for a db backend that relies on bash tools (grep, cat, echo, etc)

Simple-nosql-db is a python backend for a database that relies on unix tools such as cat, echo and grep. Funny enough I got the idea from this discuss

Sebastian Alonso 10 Aug 13, 2019
Makes google's political ad database actually useful

Making Google's political ad transparency library suck less This is a series of scripts that takes Google's political ad transparency data and makes t

The Guardian 7 Apr 28, 2022
Python object-oriented database

ZODB, a Python object-oriented database ZODB provides an object-oriented database for Python that provides a high-degree of transparency. ZODB runs on

Zope 574 Dec 31, 2022
Enfilade: Tool to Detect Infections in MongoDB Instances

Enfilade: Tool to Detect Infections in MongoDB Instances

Aditya K Sood 7 Feb 21, 2022
A Simple , ☁️ Lightweight , 💪 Efficent JSON based database for 🐍 Python.

A Simple, Lightweight, Efficent JSON based DataBase for Python The current stable version is v1.6.1 pip install pysondb==1.6.1 Support the project her

PysonDB 282 Jan 07, 2023
Elara DB is an easy to use, lightweight NoSQL database that can also be used as a fast in-memory cache.

Elara DB is an easy to use, lightweight NoSQL database written for python that can also be used as a fast in-memory cache for JSON-serializable data. Includes various methods and features to manipula

Saurabh Pujari 101 Jan 04, 2023