Repositório criado para abrigar os notebooks com a listas de exercícios propostos pelo professor Gustavo Guanabara do canal Curso em Vídeo do YouTube durante o Curso de Python 3

Overview

Curso em Vídeo - Exercícios de Python 3

Sobre o repositório

Este repositório contém os notebooks com a listas de exercícios propostos pelo professor Gustavo Guanabara do canal Curso em Vídeo do YouTube durante o Curso de Python 3.

Até o presente momento, o curso possui 3 módulos chamados de Mundos. As listas de vídeos de cada um dos Mundos com as aulas teóricas e os respectivos exercícios encontra-se abaixo:

  1. Mundo 1: Fundamentos
  2. Mundo 2: Estruturas de Controle
  3. Mundo 3: Estruturas Compostas

A lista dos vídeos contendo "apenas" (são mais de 100!) os exercícios e as suas resoluções é: Exercícios de Python 3

Usando o Google Colab para fazer os exercícios

A ideia desse repositório é criar um notebook com a lista de exercícios de cada um dos Mundos do curso. Desta forma é possível importar esses notebooks para o ambiente do Google Colab e assim conseguir executar os códigos em Python sem a necessidade de uma instalação/configuração local do Python no computador.

Para isso, siga o seguinte passo a passo:

Passo 1

Copie o endereço deste repositório abaixo. Ele é o mesmo que está na barra de endereços do seu navegador conforme a Tela 1.

https://github.com/jplpereira/curso-em-video-exercicios-python

Tela 1

Passo 2

Abra o Google Colab clicando aqui. Ele vai apresentar as opções conforme a Tela 2 abaixo:

Tela 2

Passo 3

Selecione a opção GitHub, cole o link na caixa de texto e clique no botão da lupa. A lista de notebooks será atualizada. Ao lado de cada um deles, aparecerá o botão "Abrir notebook em uma nova guia" conforme a Tela 3 abaixo. Ele fará com que uma cópia do notebook selecionado seja adicionada no seu Google Drive.

Tela 3

Passo 4

O notebook vai abrir em uma nova guia do seu navegador pronto para você usar conforme a Tela 4.

Tela 4

Passo 5

Caso esteja logado com a sua conta do GitHub, clique no botão Star para ajudar esse repositório a ter mais visibilidade dentro da plataforma e chegar a mais pessoas interessadas em aprender Python.

Tela 5

Divirta-se assistindo as aulas do professor Guanabara e resolvendo os exercícios propostos. Espero que esse trabalho te ajude na sua jornada de aprendizado do Python!

Owner
João Pedro Pereira
João Pedro Pereira
Face Recognition & AI Based Smart Attendance Monitoring System.

In today’s generation, authentication is one of the biggest problems in our society. So, one of the most known techniques used for authentication is h

Sagar Saha 1 Jan 14, 2022
PyTorch code for the "Deep Neural Networks with Box Convolutions" paper

Box Convolution Layer for ConvNets Single-box-conv network (from `examples/mnist.py`) learns patterns on MNIST What This Is This is a PyTorch implemen

Egor Burkov 515 Dec 18, 2022
Code repo for "Cross-Scale Internal Graph Neural Network for Image Super-Resolution" (NeurIPS'20)

IGNN Code repo for "Cross-Scale Internal Graph Neural Network for Image Super-Resolution" [paper] [supp] Prepare datasets 1 Download training dataset

Shangchen Zhou 278 Jan 03, 2023
DTCN IJCAI - Sequential prediction learning framework and algorithm

DTCN This is the implementation of our paper "Sequential Prediction of Social Me

Bobby 2 Jan 24, 2022
SGoLAM - Simultaneous Goal Localization and Mapping

SGoLAM - Simultaneous Goal Localization and Mapping PyTorch implementation of the MultiON runner-up entry, SGoLAM: Simultaneous Goal Localization and

10 Jan 05, 2023
Code for testing convergence rates of Lipschitz learning on graphs

📈 LipschitzLearningRates The code in this repository reproduces the experimental results on convergence rates for k-nearest neighbor graph infinity L

2 Dec 20, 2021
FastCover: A Self-Supervised Learning Framework for Multi-Hop Influence Maximization in Social Networks by Anonymous.

FastCover: A Self-Supervised Learning Framework for Multi-Hop Influence Maximization in Social Networks by Anonymous.

0 Apr 02, 2021
How to Become More Salient? Surfacing Representation Biases of the Saliency Prediction Model

How to Become More Salient? Surfacing Representation Biases of the Saliency Prediction Model

Bogdan Kulynych 49 Nov 05, 2022
Codebase for Amodal Segmentation through Out-of-Task andOut-of-Distribution Generalization with a Bayesian Model

Codebase for Amodal Segmentation through Out-of-Task andOut-of-Distribution Generalization with a Bayesian Model

Yihong Sun 12 Nov 15, 2022
Keqing Chatbot With Python

KeqingChatbot A public running instance can be found on telegram as @keqingchat_bot. Requirements Python 3.8 or higher. A bot token. Local Deploy git

Rikka-Chan 2 Jan 16, 2022
CLADE - Efficient Semantic Image Synthesis via Class-Adaptive Normalization (TPAMI 2021)

Efficient Semantic Image Synthesis via Class-Adaptive Normalization (Accepted by TPAMI)

tzt 49 Nov 17, 2022
Data and code for ICCV 2021 paper Distant Supervision for Scene Graph Generation.

Distant Supervision for Scene Graph Generation Data and code for ICCV 2021 paper Distant Supervision for Scene Graph Generation. Introduction The pape

THUNLP 23 Dec 31, 2022
CSWin Transformer: A General Vision Transformer Backbone with Cross-Shaped

CSWin-Transformer This repo is the official implementation of "CSWin Transformer: A General Vision Transformer Backbone with Cross-Shaped Windows". Th

Microsoft 409 Jan 06, 2023
A novel pipeline framework for multi-hop complex KGQA task. About the paper title: Improving Multi-hop Embedded Knowledge Graph Question Answering by Introducing Relational Chain Reasoning

Rce-KGQA A novel pipeline framework for multi-hop complex KGQA task. This framework mainly contains two modules, answering_filtering_module and relati

金伟强 -上海大学人工智能小渣渣~ 16 Nov 18, 2022
Neural Fixed-Point Acceleration for Convex Optimization

Licensing The majority of neural-scs is licensed under the CC BY-NC 4.0 License, however, portions of the project are available under separate license

Facebook Research 27 Oct 06, 2022
Multi-Stage Episodic Control for Strategic Exploration in Text Games

XTX: eXploit - Then - eXplore Requirements First clone this repo using git clone https://github.com/princeton-nlp/XTX.git Please create two conda envi

Princeton Natural Language Processing 9 May 24, 2022
Release of the ConditionalQA dataset

ConditionalQA Datasets accompanying the paper ConditionalQA: A Complex Reading Comprehension Dataset with Conditional Answers. Disclaimer This dataset

14 Oct 17, 2022
Evolutionary Scale Modeling (esm): Pretrained language models for proteins

Evolutionary Scale Modeling This repository contains code and pre-trained weights for Transformer protein language models from Facebook AI Research, i

Meta Research 1.6k Jan 09, 2023
Repo for the Video Person Clustering dataset, and code for the associated paper

Video Person Clustering Repo for the Video Person Clustering dataset, and code for the associated paper. This reporsitory contains the Video Person Cl

Andrew Brown 47 Nov 02, 2022
Rational Activation Functions - Replacing Padé Activation Units

Rational Activations - Learnable Rational Activation Functions First introduce as PAU in Padé Activation Units: End-to-end Learning of Activation Func

<a href=[email protected]"> 38 Nov 22, 2022