Grounding Representation Similarity with Statistical Testing

Overview

Grounding Representation Similarity with Statistical Testing

This repo contains code to replicate the results in our paper, which evaluates representation similarity measures with a series of benchmark tasks. The experiments in the paper require first computing neural network embeddings of a dataset and computing accuracy scores of that neural network, which we provide pre-computed. This repo contains the code that implements our benchmark evaluation, given these embeddings and performance scores.

File descriptions

This repo: sim_metric

This repo is organized as follows:

  • experiments/ contains code to run the experiments in part 4 of the paper:
    • layer_exp is the first experiment in part 4, with different random seeds and layer depths
    • pca_deletion is the second experiment in part 4, with different numbers of principal components deleted
    • feather is the first experiment in part 4.1, with different finetuning seeds
    • pretrain_finetune is the second experiment in part 4.2, with different pretraining and finetuning seeds
  • dists/ contains functions to compute dissimilarities between representations.

Pre-computed resources: sim_metric_resources

The pre-computed embeddings and scores available at https://zenodo.org/record/5117844 can be downloaded and unzipped into a folder titled sim_metric_resources, which is organized as follows:

  • embeddings contains the embeddings between which we are computing dissimilarities
  • dists contains, for every experiment, the dissimilarities between the corresponding embeddings, for every metric:
    • dists.csv contains the precomputed dissimilarities
    • dists_self_computed.csv contains the dissimilarities computed by running compute_dists.py (see below)
  • scores contains, for every experiment, the accuracy scores of the embeddings
  • full_dfs contains, for every experiment, a csv file aggregating the dissimilarities and accuracy differences between the embeddings

Instructions

  • clone this repository
  • go to https://zenodo.org/record/5117844 and download sim_metric_resources.tar
  • untar it with tar -xvf sim_metric_resources sim_metric_resources.tar
  • in sim_metric/paths.py, modify the path to sim_metric_resources

Replicating the results

For every experiment (eg feather, pretrain_finetune, layer_exp, or pca_deletion):

  • the relevant dissimilarities and accuracies differences have already been precomputed and aggregated in a dataframe full_df
  • make sure that dists_path and full_df_path in compute_full_df.py, script.py and notebook.ipynb are set to dists.csv and full_df.csv, and not dists_self_computed.csv and full_df_self_computed.csv.
  • to get the results, you can:
    • run the notebook notebook.ipynb, or
    • run script.py in the experiment's folder, and find the results in results.txt, in the same folder To run the scripts for all four experiments, run experiments/script.py.

Recomputing dissimilarities

For every experiment, you can:

  • recompute the dissimilarities between embeddings by running compute_dists.py in this experiment's folder
  • use these and the accuracy scores to recompute the aggregate dataframe by running compute_full_df.py in this experiment's folder
  • change dists_path and full_df_path in compute_full_df.py, script.py and notebook.ipynb from dists.csv and full_df.csv to dists_self_computed.csv and full_df_self_computed.csv
  • run the experiments with script.py or notebook.ipynb as above.

Adding a new metric

This repo also allows you to test a new representational similarity metric and see how it compares according to our benchmark. To add a new metric:

  • add the corresponding function at the end of dists/scoring.py
  • add a condition in dists/score_pair.py, around line 160
  • for every experiment in experiments, add the name of the metric to the metrics list in compute_dists.py
NCVX (NonConVeX): A User-Friendly and Scalable Package for Nonconvex Optimization in Machine Learning.

The source code is temporariy removed, as we are solving potential copyright and license issues with GRANSO (http://www.timmitchell.com/software/GRANS

SUN Group @ UMN 28 Aug 03, 2022
A basic duplicate image detection service using perceptual image hash functions and nearest neighbor search, implemented using faiss, fastapi, and imagehash

Duplicate Image Detection Getting Started Install dependencies pip install -r requirements.txt Run service python main.py Testing Test with pytest How

Matthew Podolak 21 Nov 11, 2022
Official code repository for "Exploring Neural Models for Query-Focused Summarization"

Query-Focused Summarization Official code repository for "Exploring Neural Models for Query-Focused Summarization" This is a work in progress. Expect

Salesforce 29 Dec 18, 2022
Retrieve and analysis data from SDSS (Sloan Digital Sky Survey)

Author: Behrouz Safari License: MIT sdss A python package for retrieving and analysing data from SDSS (Sloan Digital Sky Survey) Installation Install

Behrouz 3 Oct 28, 2022
This is the code for ACL2021 paper A Unified Generative Framework for Aspect-Based Sentiment Analysis

This is the code for ACL2021 paper A Unified Generative Framework for Aspect-Based Sentiment Analysis Install the package in the requirements.txt, the

108 Dec 23, 2022
Official PyTorch code for WACV 2022 paper "CFLOW-AD: Real-Time Unsupervised Anomaly Detection with Localization via Conditional Normalizing Flows"

CFLOW-AD: Real-Time Unsupervised Anomaly Detection with Localization via Conditional Normalizing Flows WACV 2022 preprint:https://arxiv.org/abs/2107.1

Denis 156 Dec 28, 2022
Self-training with Weak Supervision (NAACL 2021)

This repo holds the code for our weak supervision framework, ASTRA, described in our NAACL 2021 paper: "Self-Training with Weak Supervision"

Microsoft 148 Nov 20, 2022
Deep learning PyTorch library for time series forecasting, classification, and anomaly detection

Deep learning for time series forecasting Flow forecast is an open-source deep learning for time series forecasting framework. It provides all the lat

AIStream 1.2k Jan 04, 2023
SBINN: Systems-biology informed neural network

SBINN: Systems-biology informed neural network The source code for the paper M. Daneker, Z. Zhang, G. E. Karniadakis, & L. Lu. Systems biology: Identi

Lu Group 15 Nov 19, 2022
JAX-based neural network library

Haiku: Sonnet for JAX Overview | Why Haiku? | Quickstart | Installation | Examples | User manual | Documentation | Citing Haiku What is Haiku? Haiku i

DeepMind 2.3k Jan 04, 2023
Warning: This project does not have any current developer. See bellow.

Pylearn2: A machine learning research library Warning : This project does not have any current developer. We will continue to review pull requests and

Laboratoire d’Informatique des Systèmes Adaptatifs 2.7k Dec 26, 2022
SimulLR - PyTorch Implementation of SimulLR

PyTorch Implementation of SimulLR There is an interesting work[1] about simultan

11 Dec 22, 2022
Code and Resources for the Transformer Encoder Reasoning Network (TERN)

Transformer Encoder Reasoning Network Code for the cross-modal visual-linguistic retrieval method from "Transformer Reasoning Network for Image-Text M

Nicola Messina 53 Dec 30, 2022
Repository providing a wide range of self-supervised pretrained models for computer vision tasks.

Hierarchical Pretraining: Research Repository This is a research repository for reproducing the results from the project "Self-supervised pretraining

Colorado Reed 53 Nov 09, 2022
An Open-Source Toolkit for Prompt-Learning.

An Open-Source Framework for Prompt-learning. Overview • Installation • How To Use • Docs • Paper • Citation • What's New? Nov 2021: Now we have relea

THUNLP 2.3k Jan 07, 2023
Beyond Image to Depth: Improving Depth Prediction using Echoes (CVPR 2021)

Beyond Image to Depth: Improving Depth Prediction using Echoes (CVPR 2021) Kranti Kumar Parida, Siddharth Srivastava, Gaurav Sharma. We address the pr

Kranti Kumar Parida 33 Jun 27, 2022
Convert onnx models to pytorch.

onnx2torch onnx2torch is an ONNX to PyTorch converter. Our converter: Is easy to use – Convert the ONNX model with the function call convert; Is easy

ENOT 264 Dec 30, 2022
A Simple LSTM-Based Solution for "Heartbeat Signal Classification and Prediction" in Tianchi

LSTM-Time-Series-Prediction A Simple LSTM-Based Solution for "Heartbeat Signal Classification and Prediction" in Tianchi Contest. The Link of the Cont

KevinCHEN 1 Jun 13, 2022
Code for the paper "Next Generation Reservoir Computing"

Next Generation Reservoir Computing This is the code for the results and figures in our paper "Next Generation Reservoir Computing". They are written

OSU QuantInfo Lab 105 Dec 20, 2022
Uncertainty Estimation via Response Scaling for Pseudo-mask Noise Mitigation in Weakly-supervised Semantic Segmentation

Uncertainty Estimation via Response Scaling for Pseudo-mask Noise Mitigation in Weakly-supervised Semantic Segmentation Introduction This is a PyTorch

XMed-Lab 30 Sep 23, 2022