A study project using the AA-RMVSNet to reconstruct buildings from multiple images

Overview

3d-building-reconstruction

This is part of a study project using the AA-RMVSNet to reconstruct buildings from multiple images.

Introduction

It is exciting to connect the 2D world with 3D world using Multi-view Stereo(MVS) methods. In this project, we aim to reconstruct several architecture in our campus. Since it's outdoor reconstruction, We chose to use AA-RMVSNet to do this work for its marvelous performance is outdoor datasets after comparing some similar models such as CasMVSNet and D2HC-RMVSNet. The code is retrieved from here with some modification.

Reproduction

Here we summarize the main steps we took when doing this project. You can reproduce our result after these steps.

Installation

First, you need to create a virtual environment and install the necessary dependencies.

conda create -n test python=3.6
conda activate test
conda install pytorch==1.1.0 torchvision==0.3.0 cudatoolkit=10.0 -c pytorch
conda install -c conda-forge py-opencv plyfile tensorboardx

Other cuda versions can be found here

Struct from Motion

Camera parameters are required to conduct the MVSNet based methods. Please first download the open source software COLMAP.

The workflow is as follow:

  1. Open the COLMAP, then successively click reconstruction-Automatic reconstruction options.
  2. Select your Workspace folder and Image folder.
  3. (Optional) Unclick Dense model to accelerate the reconstruction procedure.
  4. Click Run.
  5. After the completion of reconstruction, you should be able to see the result of sparse reconstruction as well as position of cameras.(Fig )
  6. Click File - Export model as text. There should be a camera.txt in the output folder, each line represent a photo. In case there are photos that remain mismatched, you should dele these photos and rematch. Repeat this process until all the photos are mathced.
  7. Move the there txts to the sparse folder.

img

AA-RMVSNet

To use AA-RMVSNet to reconstruct the building, please follow the steps listed below.

  1. Clone this repository to a local folder.

  2. The custom testing folder should be placed in the root directory of the cloned folder. This folder should have to subfolders names images and sparse. The images folder is meant to place the photos, and the sparse folder should have the three txt files recording the camera's parameters.

  3. Find the file list-dtu-test.txt, and write the name of the folder which you wish to be tested.

  4. Run colmap2mvsnet.py by

    python ./sfm/colmap2mvsnet.py --dense_folder name --interval_scale 1.06 --max_d 512
    

    The parameter dense_folder is compulsory, others being optional. You can also change the default value in the following shells.

  5. When you get the result of the previous step, run the following commands

    sh ./scripts/eval_dtu.sh
    sh ./scripts/fusion_dtu.sh
    
  6. Then you are should see the output .ply files in the outputs_dtu folder.

Here dtu means the data is organized in the format of DTU dataset.

Results

We reconstructed various spot of out campus. The reconstructed point cloud files is available here (Code: nz1e). You can visualize the file with Meshlab or CloudCompare .

Deep-Learning-Image-Captioning - Implementing convolutional and recurrent neural networks in Keras to generate sentence descriptions of images

Deep Learning - Image Captioning with Convolutional and Recurrent Neural Nets ========================================================================

23 Apr 06, 2022
Scales, Chords, and Cadences: Practical Music Theory for MIR Researchers

ISMIR-musicTheoryTutorial This repository has slides and Jupyter notebooks for the ISMIR 2021 tutorial Scales, Chords, and Cadences: Practical Music T

Johanna Devaney 58 Oct 11, 2022
A repository for benchmarking neural vocoders by their quality and speed.

License The majority of VocBench is licensed under CC-BY-NC, however portions of the project are available under separate license terms: Wavenet, Para

Meta Research 177 Dec 12, 2022
Code for the paper "Zero-shot Natural Language Video Localization" (ICCV2021, Oral).

Zero-shot Natural Language Video Localization (ZSNLVL) by Pseudo-Supervised Video Localization (PSVL) This repository is for Zero-shot Natural Languag

Computer Vision Lab. @ GIST 37 Dec 27, 2022
PyTorch implementation of paper: HPNet: Deep Primitive Segmentation Using Hybrid Representations.

HPNet This repository contains the PyTorch implementation of paper: HPNet: Deep Primitive Segmentation Using Hybrid Representations. Installation The

Siming Yan 42 Dec 07, 2022
Source code for Task-Aware Variational Adversarial Active Learning

Contrastive Coding for Active Learning under Class Distribution Mismatch Official PyTorch implementation of ["Contrastive Coding for Active Learning u

27 Nov 23, 2022
JFB: Jacobian-Free Backpropagation for Implicit Models

JFB: Jacobian-Free Backpropagation for Implicit Models

Typal Research 28 Dec 11, 2022
Human Detection - Pedestrian Detection using OpenCV Python

Pedestrian Detection using OpenCV Python Follow us on Instagram for Machine Lear

Hrishikesh Dutta 1 Jan 23, 2022
Meta-TTS: Meta-Learning for Few-shot SpeakerAdaptive Text-to-Speech

Meta-TTS: Meta-Learning for Few-shot SpeakerAdaptive Text-to-Speech This repository is the official implementation of "Meta-TTS: Meta-Learning for Few

Sung-Feng Huang 128 Dec 25, 2022
Noise Conditional Score Networks (NeurIPS 2019, Oral)

Generative Modeling by Estimating Gradients of the Data Distribution This repo contains the official implementation for the NeurIPS 2019 paper Generat

451 Dec 26, 2022
Train Dense Passage Retriever (DPR) with a single GPU

Gradient Cached Dense Passage Retrieval Gradient Cached Dense Passage Retrieval (GC-DPR) - is an extension of the original DPR library. We introduce G

Luyu Gao 92 Jan 02, 2023
Code for the tech report Toward Training at ImageNet Scale with Differential Privacy

Differentially private Imagenet training Code for the tech report Toward Training at ImageNet Scale with Differential Privacy by Alexey Kurakin, Steve

Google Research 29 Nov 03, 2022
A Tensorflow based library for Time Series Modelling with Gaussian Processes

Markovflow Documentation | Tutorials | API reference | Slack What does Markovflow do? Markovflow is a Python library for time-series analysis via prob

Secondmind Labs 24 Dec 12, 2022
Implementation of "A Deep Learning Loss Function based on Auditory Power Compression for Speech Enhancement" by pytorch

This repository is used to suspend the results of our paper "A Deep Learning Loss Function based on Auditory Power Compression for Speech Enhancement"

ScorpioMiku 19 Sep 30, 2022
Scheme for training and applying a label propagation framework

Factorisation-based Image Labelling Overview This is a scheme for training and applying the factorisation-based image labelling (FIL) framework. Some

Wellcome Centre for Human Neuroimaging 2 Dec 17, 2021
[NeurIPS'21] Shape As Points: A Differentiable Poisson Solver

Shape As Points (SAP) Paper | Project Page | Short Video (6 min) | Long Video (12 min) This repository contains the implementation of the paper: Shape

394 Dec 30, 2022
Train Yolov4 using NBX-Jobs

yolov4-trainer-nbox Train Yolov4 using NBX-Jobs. Use the powerfull functionality available in nbox-SDK repo to train a tiny-Yolo v4 model on Pascal VO

Yash Bonde 1 Jan 12, 2022
Fine-tuning StyleGAN2 for Cartoon Face Generation

Cartoon-StyleGAN 🙃 : Fine-tuning StyleGAN2 for Cartoon Face Generation Abstract Recent studies have shown remarkable success in the unsupervised imag

Jihye Back 520 Jan 04, 2023
pytorchのスライス代入操作をonnxに変換する際にScatterNDならないようにするサンプル

pytorch_remove_ScatterND pytorchのスライス代入操作をonnxに変換する際にScatterNDならないようにするサンプル。 スライスしたtensorにそのまま代入してしまうとScatterNDになるため、計算結果をcatで新しいtensorにする。 python ver

2 Dec 01, 2022
Single Image Random Dot Stereogram for Tensorflow

TensorFlow-SIRDS Single Image Random Dot Stereogram for Tensorflow SIRDS is a means to present 3D data in a 2D image. It allows for scientific data di

Greg Peatfield 5 Aug 10, 2022