Python library for serializing any arbitrary object graph into JSON. It can take almost any Python object and turn the object into JSON. Additionally, it can reconstitute the object back into Python.

Overview
https://dev.azure.com/jaraco/jsonpickle/_apis/build/status/jaraco.jsonpickle?branchName=master https://readthedocs.org/projects/jsonpickle/badge/?version=latest travis BSD

jsonpickle

jsonpickle is a library for the two-way conversion of complex Python objects and JSON. jsonpickle builds upon the existing JSON encoders, such as simplejson, json, and demjson.

For complete documentation, please visit the jsonpickle documentation.

Bug reports and merge requests are encouraged at the jsonpickle repository on github.

jsonpickle supports Python 2.7 and Python 3.4 or greater.

WARNING: jsonpickle can execute arbitrary Python code. Do not load jsonpickles from untrusted / unauthenticated sources.

Why jsonpickle?

Data serialized with python's pickle (or cPickle or dill) is not easily readable outside of python. Using the json format, jsonpickle allows simple data types to be stored in a human-readable format, and more complex data types such as numpy arrays and pandas dataframes, to be machine-readable on any platform that supports json. E.g., unlike pickled data, jsonpickled data stored in an Amazon S3 bucket is indexible by Amazon's Athena.

Install

Install from pip for the latest stable release:

pip install jsonpickle

Install from github for the latest changes:

pip install git+https://github.com/jsonpickle/jsonpickle.git

If you have the files checked out for development:

git clone https://github.com/jsonpickle/jsonpickle.git
cd jsonpickle
python setup.py develop

Numpy Support

jsonpickle includes a built-in numpy extension. If would like to encode sklearn models, numpy arrays, and other numpy-based data then you must enable the numpy extension by registering its handlers:

>>> import jsonpickle.ext.numpy as jsonpickle_numpy
>>> jsonpickle_numpy.register_handlers()

Pandas Support

jsonpickle includes a built-in pandas extension. If would like to encode pandas DataFrame or Series objects then you must enable the pandas extension by registering its handlers:

>>> import jsonpickle.ext.pandas as jsonpickle_pandas
>>> jsonpickle_pandas.register_handlers()

jsonpickleJS

jsonpickleJS is a javascript implementation of jsonpickle by Michael Scott Cuthbert. jsonpickleJS can be extremely useful for projects that have parallel data structures between Python and Javascript.

License

Licensed under the BSD License. See COPYING for details. See jsonpickleJS/LICENSE for details about the jsonpickleJS license.

Development

Use make to run the unit tests:

make test

pytest is used to run unit tests internally.

A tox target is provided to run tests using tox. Setting multi=1 tests using all installed and supported Python versions:

make tox
make tox multi=1

jsonpickle itself has no dependencies beyond the Python stdlib. tox is required for testing when using the tox test runner only.

The testing requirements are specified in requirements-dev.txt. It is recommended to create a virtualenv and run tests from within the virtualenv, or use a tool such as vx to activate the virtualenv without polluting the shell environment:

python3 -mvenv env3x
vx env3x pip install --requirement requirements-dev.txt
vx env3x make test

jsonpickle supports multiple Python versions, so using a combination of multiple virtualenvs and tox is useful in order to catch compatibility issues when developing.

Fast, correct Python JSON library supporting dataclasses, datetimes, and numpy

orjson orjson is a fast, correct JSON library for Python. It benchmarks as the fastest Python library for JSON and is more correct than the standard j

4.1k Dec 30, 2022
Ultra fast JSON decoder and encoder written in C with Python bindings

UltraJSON UltraJSON is an ultra fast JSON encoder and decoder written in pure C with bindings for Python 3.6+. Install with pip: $ python -m pip insta

3.9k Jan 02, 2023
🦉 Modern high-performance serialization utilities for Python (JSON, MessagePack, Pickle)

srsly: Modern high-performance serialization utilities for Python This package bundles some of the best Python serialization libraries into one standa

Explosion 329 Dec 28, 2022
Extended pickling support for Python objects

cloudpickle cloudpickle makes it possible to serialize Python constructs not supported by the default pickle module from the Python standard library.

1.3k Jan 05, 2023
A lightweight library for converting complex objects to and from simple Python datatypes.

marshmallow: simplified object serialization marshmallow is an ORM/ODM/framework-agnostic library for converting complex datatypes, such as objects, t

marshmallow-code 6.4k Jan 02, 2023
Python library for serializing any arbitrary object graph into JSON. It can take almost any Python object and turn the object into JSON. Additionally, it can reconstitute the object back into Python.

jsonpickle jsonpickle is a library for the two-way conversion of complex Python objects and JSON. jsonpickle builds upon the existing JSON encoders, s

1.1k Jan 02, 2023
Python wrapper around rapidjson

python-rapidjson Python wrapper around RapidJSON Authors: Ken Robbins [email prot

469 Jan 04, 2023
Protocol Buffers - Google's data interchange format

Protocol Buffers - Google's data interchange format Copyright 2008 Google Inc. https://developers.google.com/protocol-buffers/ Overview Protocol Buffe

Protocol Buffers 57.6k Jan 03, 2023
MessagePack serializer implementation for Python msgpack.org[Python]

MessagePack for Python What's this MessagePack is an efficient binary serialization format. It lets you exchange data among multiple languages like JS

MessagePack 1.7k Dec 29, 2022
serialize all of python

dill serialize all of python About Dill dill extends python's pickle module for serializing and de-serializing python objects to the majority of the b

The UQ Foundation 1.8k Jan 07, 2023
Crappy tool to convert .scw files to .json and and vice versa.

SCW-JSON-TOOL Crappy tool to convert .scw files to .json and vice versa. How to use Run main.py file with two arguments: python main.py scw2json or j

Fred31 5 May 14, 2021
FlatBuffers: Memory Efficient Serialization Library

FlatBuffers FlatBuffers is a cross platform serialization library architected for maximum memory efficiency. It allows you to directly access serializ

Google 19.6k Jan 01, 2023
Python bindings for the simdjson project.

pysimdjson Python bindings for the simdjson project, a SIMD-accelerated JSON parser. If SIMD instructions are unavailable a fallback parser is used, m

Tyler Kennedy 562 Jan 08, 2023
Generic ASN.1 library for Python

ASN.1 library for Python This is a free and open source implementation of ASN.1 types and codecs as a Python package. It has been first written to sup

Ilya Etingof 223 Dec 11, 2022
simplejson is a simple, fast, extensible JSON encoder/decoder for Python

simplejson simplejson is a simple, fast, complete, correct and extensible JSON http://json.org encoder and decoder for Python 3.3+ with legacy suppo

1.5k Dec 31, 2022
Corset is a web-based data selection portal that helps you getting relevant data from massive amounts of parallel data.

Corset is a web-based data selection portal that helps you getting relevant data from massive amounts of parallel data. So, if you don't need the whole corpus, but just a suitable subset (indeed, a c

13 Nov 10, 2022