Implementation of ToeplitzLDA for spatiotemporal stationary time series data.

Overview

ToeplitzLDA

Code for the ToeplitzLDA classifier proposed in here. The classifier conforms sklearn and can be used as a drop-in replacement for other LDA classifiers. For in-depth usage refer to the learning from label proportions (LLP) example or the example script.

Note we used Ubuntu 20.04 with python 3.8.10 to generate our results.

Getting Started / User Setup

If you only want to use this library, you can use the following setup. Note that this setup is based on a fresh Ubuntu 20.04 installation.

Getting fresh ubuntu ready

apt install python3-pip python3-venv

Python package installation

In this setup, we assume you want to run the examples that actually make use of real EEG data or the actual unsupervised speller replay. If you only want to employ ToeplitzLDA in your own spatiotemporal data / without mne and moabb then you can remove the package extra neuro, i.e. pip install toeplitzlda or pip install toeplitzlda[solver]

  1. (Optional) Install fortran Compiler. On ubuntu: apt install gfortran
  2. Create virtual environment: python3 -m venv toeplitzlda_venv
  3. Activate virtual environment: source toeplitzlda_venv/bin/activate
  4. Install toeplitzlda: pip install toeplitzlda[neuro,solver], if you dont have a fortran compiler: pip install toeplitzlda[neuro]

Check if everything works

Either clone this repo or just download the scripts/example_toeplitz_lda_bci_data.py file and run it: python example_toeplitz_lda_bci_data.py. Note that this will automatically download EEG data with a size of around 650MB.

Alternatively, you can use the scripts/example_toeplitz_lda_generated_data.py where artificial data is generated. Note however, that only stationary background noise is modeled and no interfering artifacts as is the case in, e.g., real EEG data. As a result, the overfitting effect of traditional slda on these artifacts is reduced.

Using ToeplitzLDA in place of traditional shrinkage LDA from sklearn

If you have already your own pipeline, you can simply add toeplitzlda as a dependency in your project and then replace sklearns LDA, i.e., instead of:

from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
clf = LinearDiscriminantAnalysis(solver="lsqr", shrinkage="auto")  # or eigen solver

use

from toeplitzlda.classification import ToeplitzLDA
clf = ToeplitzLDA(n_channels=your_n_channels)

where your_n_channels is the number of channels of your signal and needs to be provided for this method to work.

If you prefer using sklearn, you can only replace the covariance estimation part, note however, that this in practice (on our data) yields worse performance, as sklearn estimates the class-wise covariance matrices and averages them afterwards, whereas we remove the class-wise means and the estimate one covariance matrix from the pooled data.

So instead of:

from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
clf = LinearDiscriminantAnalysis(solver="lsqr", shrinkage="auto")  # or eigen solver

you would use

from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
from toeplitzlda.classification.covariance import ToepTapLW
toep_cov = ToepTapLW(n_channels=your_n_channels)
clf = LinearDiscriminantAnalysis(solver="lsqr", covariance_estimator=toep_cov)  # or eigen solver

Development Setup

We use a fortran compiler to provide speedups for solving block-Toeplitz linear equation systems. If you are on ubuntu you can install gfortran.

We use poetry for dependency management. If you have it installed you can simply use poetry install to set up the virtual environment with all dependencies. All extra features can be installed with poetry install -E solver,neuro.

If setup does not work for you, please open an issue. We cannot guarantee support for many different platforms, but could provide a singularity image.

Learning from label proportions

Use the run_llp.py script to apply ToeplitzLDA in the LLP scenario and create the results file for the different preprocessing parameters. These can then be visualized using visualize_llp.py to create the plots shown in our publication. Note that running LLP takes a while and the two datasets will be downloaded automatically and are approximately 16GB in size. Alternatively, you can use the results provided by us that are stored in scripts/usup_replay/provided_results by moving/copying them to the location that visualize_llp.py looks for.

ERP benchmark

This is not yet available.

Note this benchmark will take quite a long time if you do not have access to a computing cluster. The public datasets (including the LLP datasets) total a size of approximately 120GB.

BLOCKING TODO: How should we handle the private datasets?

FAQ

Why is my classification performance for my stationary spatiotemporal data really bad?

Check if your data is in channel-prime order, i.e., in the flattened feature vector, you first enumerate over all channels (or some other spatially distributed sensors) for the first time point and then for the second time point and so on. If this is not the case, tell the classifier: e.g. ToeplitzLDA(n_channels=16, data_is_channel_prime=False)

Owner
Jan Sosulski
Jan Sosulski
The PyTorch implementation of paper REST: Debiased Social Recommendation via Reconstructing Exposure Strategies

REST The PyTorch implementation of paper REST: Debiased Social Recommendation via Reconstructing Exposure Strategies. Usage Download dataset Download

DMIRLAB 2 Mar 13, 2022
Just Go with the Flow: Self-Supervised Scene Flow Estimation

Just Go with the Flow: Self-Supervised Scene Flow Estimation Code release for the paper Just Go with the Flow: Self-Supervised Scene Flow Estimation,

Himangi Mittal 50 Nov 22, 2022
EigenGAN Tensorflow, EigenGAN: Layer-Wise Eigen-Learning for GANs

Gender Bangs Body Side Pose (Yaw) Lighting Smile Face Shape Lipstick Color Painting Style Pose (Yaw) Pose (Pitch) Zoom & Rotate Flush & Eye Color Mout

Zhenliang He 321 Dec 01, 2022
NICE-GAN — Official PyTorch Implementation Reusing Discriminators for Encoding: Towards Unsupervised Image-to-Image Translation

NICE-GAN-pytorch - Official PyTorch implementation of NICE-GAN: Reusing Discriminators for Encoding: Towards Unsupervised Image-to-Image Translation

Runfa Chen 208 Nov 25, 2022
Implement of homography net by pytorch

HomographyNet Implement of homography net by pytorch Brief Introduction This project is based on the work Homography-Net: @article{detone2016deep, t

ronghao_CN 4 May 19, 2022
YOLOPのPythonでのONNX推論サンプル

YOLOP-ONNX-Video-Inference-Sample YOLOPのPythonでのONNX推論サンプルです。 ONNXモデルは、hustvl/YOLOP/weights を使用しています。 Requirement OpenCV 3.4.2 or later onnxruntime 1.

KazuhitoTakahashi 8 Sep 05, 2022
Spearmint Bayesian optimization codebase

Spearmint Spearmint is a software package to perform Bayesian optimization. The Software is designed to automatically run experiments (thus the code n

Formerly: Harvard Intelligent Probabilistic Systems Group -- Now at Princeton 1.5k Dec 29, 2022
Simple API for UCI Machine Learning Dataset Repository (search, download, analyze)

A simple API for working with University of California, Irvine (UCI) Machine Learning (ML) repository Table of Contents Introduction About Page of the

Tirthajyoti Sarkar 223 Dec 05, 2022
Official pytorch implementation of the AAAI 2021 paper Semantic Grouping Network for Video Captioning

Semantic Grouping Network for Video Captioning Hobin Ryu, Sunghun Kang, Haeyong Kang, and Chang D. Yoo. AAAI 2021. [arxiv] Environment Ubuntu 16.04 CU

Hobin Ryu 43 Nov 25, 2022
PyTorch code for Composing Partial Differential Equations with Physics-Aware Neural Networks

FInite volume Neural Network (FINN) This repository contains the PyTorch code for models, training, and testing, and Python code for data generation t

Cognitive Modeling 20 Dec 18, 2022
Human Activity Recognition example using TensorFlow on smartphone sensors dataset and an LSTM RNN. Classifying the type of movement amongst six activity categories - Guillaume Chevalier

LSTMs for Human Activity Recognition Human Activity Recognition (HAR) using smartphones dataset and an LSTM RNN. Classifying the type of movement amon

Guillaume Chevalier 3.1k Dec 30, 2022
UmlsBERT: Clinical Domain Knowledge Augmentation of Contextual Embeddings Using the Unified Medical Language System Metathesaurus

UmlsBERT: Clinical Domain Knowledge Augmentation of Contextual Embeddings Using the Unified Medical Language System Metathesaurus General info This is

71 Oct 25, 2022
Justmagic - Use a function as a method with this mystic script, like in Nim

justmagic Use a function as a method with this mystic script, like in Nim. Just

witer33 8 Oct 08, 2022
These are the materials for the paper "Few-Shot Out-of-Domain Transfer Learning of Natural Language Explanations"

Few-shot-NLEs These are the materials for the paper "Few-Shot Out-of-Domain Transfer Learning of Natural Language Explanations". You can find the smal

Yordan Yordanov 0 Oct 21, 2022
"Projelerle Yapay Zeka Ve Bilgisayarlı Görü" Kitabımın projeleri

"Projelerle Yapay Zeka Ve Bilgisayarlı Görü" Kitabımın projeleri Bu Github Reposundaki tüm projeler; kaleme almış olduğum "Projelerle Yapay Zekâ ve Bi

Ümit Aksoylu 4 Aug 03, 2022
Repository for the electrical and ICT benchmark model developed in the ERIGrid 2.0 project.

Benchmark Model Electrical and ICT System This repository contains the documentation, code, and models for the electrical and ICT benchmark model deve

ERIGrid 2.0 1 Nov 29, 2021
Generating Radiology Reports via Memory-driven Transformer

R2Gen This is the implementation of Generating Radiology Reports via Memory-driven Transformer at EMNLP-2020. Citations If you use or extend our work,

CUHK-SZ NLP Group 101 Dec 13, 2022
An unofficial implementation of "Unpaired Image Super-Resolution using Pseudo-Supervision." CVPR2020

UnpairedSR An unofficial implementation of "Unpaired Image Super-Resolution using Pseudo-Supervision." CVPR2020 turn RCAN(modified) -- xmodel(xilinx

JiaKui Hu 10 Oct 28, 2022
This is my research project for the Irving Center for Cancer Dynamics/Azizi Lab, Columbia University.

bayesian_uncertainty This is my research project for the Irving Center for Cancer Dynamics/Azizi Lab, Columbia University. In this project I build a s

Max David Gupta 1 Feb 13, 2022
2020 CCF大数据与计算智能大赛-非结构化商业文本信息中隐私信息识别-第7名方案

2020CCF-NER 2020 CCF大数据与计算智能大赛-非结构化商业文本信息中隐私信息识别-第7名方案 bert base + flat + crf + fgm + swa + pu learning策略 + clue数据集 = test1单模0.906 词向量

67 Oct 19, 2022