Implementation of experiments in the paper Clockwork Variational Autoencoders (project website) using JAX and Flax

Overview

Clockwork VAEs in JAX/Flax

Implementation of experiments in the paper Clockwork Variational Autoencoders (project website) using JAX and Flax, ported from the official TensorFlow implementation.

Running on a single TPU v3, training is 10x faster than reported in the paper (60h -> 6h on minerl).

Method

Clockwork VAEs are deep generative model that learn long-term dependencies in video by leveraging hierarchies of representations that progress at different clock speeds. In contrast to prior video prediction methods that typically focus on predicting sharp but short sequences in the future, Clockwork VAEs can accurately predict high-level content, such as object positions and identities, for 1000 frames.

Clockwork VAEs build upon the Recurrent State Space Model (RSSM), so each state contains a deterministic component for long-term memory and a stochastic component for sampling diverse plausible futures. Clockwork VAEs are trained end-to-end to optimize the evidence lower bound (ELBO) that consists of a reconstruction term for each image and a KL regularizer for each stochastic variable in the model.

Instructions

This repository contains the code for training the Clockwork VAE model on the datasets minerl, mazes, and mmnist.

The datasets will automatically be downloaded into the --datadir directory.

python3 train.py --logdir /path/to/logdir --datadir /path/to/datasets --config configs/<dataset>.yml 

The evaluation script writes open-loop video predictions in both PNG and NPZ format and plots of PSNR and SSIM to the data directory.

python3 eval.py --logdir /path/to/logdir

Known differences from the original

  • Flax' default kernel initializer, layer precision and GRU implementation (avoiding redundant biases) are used.
  • For some configuration parameters, only the defaults are implemented.
  • Training metrics and videos are logged with wandb.
  • The base configuration is in config.py.

Added features:

  • This implementation runs on TPU out-of-the-box.
  • Apart from the config file, configuration can be done via command line and wandb.
  • Matching the seed of a previous run will exactly repeat it.

Things to watch out for

Replication of paper results for the mazes dataset has not been confirmed yet.

Getting evaluation metrics is a memory bottleneck during training, due to the large eval_seq_len. If you run out of device memory, consider lowering it during training, for example to 100. Remember to pass in the original value to eval.py to get unchanged results.

Acknowledgements

Thanks to Vaibhav Saxena and Danijar Hafner for helpful discussions and to Jamie Townsend for reviewing code.

Owner
Julius Kunze
Let's create helpful intelligent machines.
Julius Kunze
Official implementation of cosformer-attention in cosFormer: Rethinking Softmax in Attention

cosFormer Official implementation of cosformer-attention in cosFormer: Rethinking Softmax in Attention Update log 2022/2/28 Add core code License This

120 Dec 15, 2022
Code repository for the paper: Hierarchical Kinematic Probability Distributions for 3D Human Shape and Pose Estimation from Images in the Wild (ICCV 2021)

Hierarchical Kinematic Probability Distributions for 3D Human Shape and Pose Estimation from Images in the Wild Akash Sengupta, Ignas Budvytis, Robert

Akash Sengupta 149 Dec 14, 2022
Edge-aware Guidance Fusion Network for RGB-Thermal Scene Parsing

EGFNet Edge-aware Guidance Fusion Network for RGB-Thermal Scene Parsing Dataset and Results Test maps: 百度网盘 提取码:zust Citation @ARTICLE{ author={Zhou,

ShaohuaDong 10 Dec 08, 2022
D-NeRF: Neural Radiance Fields for Dynamic Scenes

D-NeRF: Neural Radiance Fields for Dynamic Scenes [Project] [Paper] D-NeRF is a method for synthesizing novel views, at an arbitrary point in time, of

Albert Pumarola 291 Jan 02, 2023
Implementation of DropLoss for Long-Tail Instance Segmentation in Pytorch

[AAAI 2021]DropLoss for Long-Tail Instance Segmentation [AAAI 2021] DropLoss for Long-Tail Instance Segmentation Ting-I Hsieh*, Esther Robb*, Hwann-Tz

Tim 37 Dec 02, 2022
High-quality single file implementation of Deep Reinforcement Learning algorithms with research-friendly features

CleanRL (Clean Implementation of RL Algorithms) CleanRL is a Deep Reinforcement Learning library that provides high-quality single-file implementation

Costa Huang 1.8k Jan 01, 2023
Extremely easy multi instancing software for minecraft speedrunning.

Easy Multi Extremely easy multi/single instancing software for minecraft speedrunning. A couple of goals of this project: Setup multi in minutes No fi

Duncan 8 Jul 16, 2022
Flask101 - FullStack Web Development with Python & JS - From TAQWA

Task: Create a CLI Calculator Step 0: Creating Virtual Environment $ python -m

Hossain Foysal 1 May 31, 2022
To build a regression model to predict the concrete compressive strength based on the different features in the training data.

Cement-Strength-Prediction Problem Statement To build a regression model to predict the concrete compressive strength based on the different features

Ashish Kumar 4 Jun 11, 2022
A PyTorch Implementation of Gated Graph Sequence Neural Networks (GGNN)

A PyTorch Implementation of GGNN This is a PyTorch implementation of the Gated Graph Sequence Neural Networks (GGNN) as described in the paper Gated G

Ching-Yao Chuang 427 Dec 13, 2022
Second-Order Neural ODE Optimizer, NeurIPS 2021 spotlight

Second-order Neural ODE Optimizer (NeurIPS 2021 Spotlight) [arXiv] ✔️ faster convergence in wall-clock time | ✔️ O(1) memory cost | ✔️ better test-tim

Guan-Horng Liu 39 Oct 22, 2022
Select, weight and analyze complex sample data

Sample Analytics In large-scale surveys, often complex random mechanisms are used to select samples. Estimates derived from such samples must reflect

samplics 37 Dec 15, 2022
This is the official repository of Music Playlist Title Generation: A Machine-Translation Approach.

PlyTitle_Generation This is the official repository of Music Playlist Title Generation: A Machine-Translation Approach. The paper has been accepted by

SeungHeonDoh 6 Jan 03, 2022
Implementation of the Swin Transformer in PyTorch.

Swin Transformer - PyTorch Implementation of the Swin Transformer architecture. This paper presents a new vision Transformer, called Swin Transformer,

597 Jan 03, 2023
TriMap: Large-scale Dimensionality Reduction Using Triplets

TriMap TriMap is a dimensionality reduction method that uses triplet constraints to form a low-dimensional embedding of a set of points. The triplet c

Ehsan Amid 235 Dec 24, 2022
PyTorch package for the discrete VAE used for DALL·E.

Overview [Blog] [Paper] [Model Card] [Usage] This is the official PyTorch package for the discrete VAE used for DALL·E. Installation Before running th

OpenAI 9.5k Jan 05, 2023
QT Py Media Knob using rotary encoder & neopixel ring

QTPy-Knob QT Py USB Media Knob using rotary encoder & neopixel ring The QTPy-Knob features: Media knob for volume up/down/mute with "qtpy-knob.py" Cir

Tod E. Kurt 56 Dec 30, 2022
Pytorch implementation of ProjectedGAN

ProjectedGAN-pytorch Pytorch implementation of ProjectedGAN (https://arxiv.org/abs/2111.01007) Note: this repository is still under developement. @InP

Dominic Rampas 17 Dec 14, 2022
SAT Project - The first project I had done at General Assembly, performed EDA, data cleaning and created data visualizations

Project 1: Standardized Test Analysis by Adam Klesc Overview This project covers: Basic statistics and probability Many Python programming concepts Pr

Adam Muhammad Klesc 1 Jan 03, 2022
[CVPR 2022] Unsupervised Image-to-Image Translation with Generative Prior

GP-UNIT - Official PyTorch Implementation This repository provides the official PyTorch implementation for the following paper: Unsupervised Image-to-

Shuai Yang 125 Jan 03, 2023