[ICCV 2021] Deep Hough Voting for Robust Global Registration

Related tags

Deep LearningDHVR
Overview

Deep Hough Voting for Robust Global Registration, ICCV, 2021

Project Page | Paper | Video

Deep Hough Voting for Robust Global Registration
Junha Lee1, Seungwook Kim1, Minsu Cho1, Jaesik Park1
1POSTECH CSE & GSAI
in ICCV 2021

An Overview of the proposed pipeline

Overview

Point cloud registration is the task of estimating the rigid transformation that aligns a pair of point cloud fragments. We present an efficient and robust framework for pairwise registration of real-world 3D scans, leveraging Hough voting in the 6D transformation parameter space. First, deep geometric features are extracted from a point cloud pair to compute putative correspondences. We then construct a set of triplets of correspondences to cast votes on the 6D Hough space, representing the transformation parameters in sparse tensors. Next, a fully convolutional refinement module is applied to refine the noisy votes. Finally, we identify the consensus among the correspondences from the Hough space, which we use to predict our final transformation parameters. Our method outperforms state-of-the-art methods on 3DMatch and 3DLoMatch benchmarks while achieving comparable performance on KITTI odometry dataset. We further demonstrate the generalizability of our approach by setting a new state-of-the-art on ICL-NUIM dataset, where we integrate our module into a multi-way registration pipeline.

Citing our paper

@InProceedings{lee2021deephough, 
    title={Deep Hough Voting for Robust Global Registration},
    author={Junha Lee and Seungwook Kim and Minsu Cho and Jaesik Park},
    booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)},
    year={2021}
}

Experiments

Speed vs Accuracy Qualitative results
Table Accuracy vs. Speed

Installation

This repository is developed and tested on

  • Ubuntu 18.04
  • CUDA 11.1
  • Python 3.8.11
  • Pytorch 1.4.9
  • MinkowskiEngine 0.5.4

Environment Setup

Our pipeline is built on MinkowskiEngine. You can install the MinkowskiEngine and the python requirements on your system with:

# setup requirements for MinkowksiEngine
conda create -n dhvr python=3.8
conda install pytorch=1.9.1 torchvision cudatoolkit=11.1 -c pytorch -c nvidia
conda install numpy
conda install openblas-devel -c anaconda

# install MinkowskiEngine
pip install -U git+https://github.com/NVIDIA/MinkowskiEngine -v --no-deps --install-option="--blas_include_dirs=${CONDA_PREFIX}/include" --install-option="--blas=openblas"

# download and setup DHVR
git clone https://github.com/junha-l/DHVR.git
cd DHVR
pip install -r requirements.txt

We also depends on torch-batch-svd, an open-source library for 100x faster (batched) svd on GPU. You can follow the below instruction to install torch-batch-svd

# if your cuda installation directory is other than "/usr/local/cuda", you have to specify it.
(CUDA_HOME=PATH/TO/CUDA/ROOT) bash scripts/install_3rdparty.sh

3DMatch Dataset

Training

You can download preprocessed training dataset, which is provided by the author of FCGF, via these commands:

# download 3dmatch train set 
bash scripts/download_3dmatch.sh PATH/TO/3DMATCH
# create symlink
ln -s PATH/TO/3DMATCH ./dataset/3dmatch

Testing

The official 3DMatch test set is available at the official website. You should download fragments data of Geometric Registration Benchmark and decompress them to a new folder.

Then, create a symlink via following command:

ln -s PATH/TO/3DMATCH_TEST ./dataset/3dmatch-test

Train DHVR

The default feature extractor we used in our experiments is FCGF. You can download pretrained FCGF models via following commands:

bash scripts/download_weights.sh

Then, train with

python train.py config/train_3dmatch.gin --run_name NAME_OF_EXPERIMENT

Test DHVR

You can test DHVR via following commands:

3DMatch

python test.py config/test_3dmatch.gin --run_name EXP_NAME --load_path PATH/TO/CHECKPOINT

3DLoMatch

python test.py config/test_3dlomatch.gin --run_name EXP_NAME --load_path PATH/TO/CHECKPOINT

Pretrained Weights

We also provide pretrained weights on 3DMatch dataset. You can download the checkpoint in following link.

Acknowledments

Our code is based on the MinkowskiEngine. We also refer to FCGF, DGR, and torch-batch-svd.

Owner
Junha Lee
Junha Lee
Fusion-in-Decoder Distilling Knowledge from Reader to Retriever for Question Answering

This repository contains code for: Fusion-in-Decoder models Distilling Knowledge from Reader to Retriever Dependencies Python 3 PyTorch (currently tes

Meta Research 323 Dec 19, 2022
Official Repository for the paper "Improving Baselines in the Wild".

iWildCam and FMoW baselines (WILDS) This repository was originally forked from the official repository of WILDS datasets (commit 7e103ed) For general

Kazuki Irie 3 Nov 24, 2022
Segmentation Training Pipeline

Segmentation Training Pipeline This package is a part of Musket ML framework. Reasons to use Segmentation Pipeline Segmentation Pipeline was developed

Musket ML 52 Dec 12, 2022
UniMoCo: Unsupervised, Semi-Supervised and Full-Supervised Visual Representation Learning

UniMoCo: Unsupervised, Semi-Supervised and Full-Supervised Visual Representation Learning This is the official PyTorch implementation for UniMoCo pape

dddzg 49 Jan 02, 2023
This repo is a PyTorch implementation for Paper "Unsupervised Learning for Cuboid Shape Abstraction via Joint Segmentation from Point Clouds"

Unsupervised Learning for Cuboid Shape Abstraction via Joint Segmentation from Point Clouds This repository is a PyTorch implementation for paper: Uns

Kaizhi Yang 42 Dec 09, 2022
Deep learning PyTorch library for time series forecasting, classification, and anomaly detection

Deep learning for time series forecasting Flow forecast is an open-source deep learning for time series forecasting framework. It provides all the lat

AIStream 1.2k Jan 04, 2023
A Python library for unevenly-spaced time series analysis

traces A Python library for unevenly-spaced time series analysis. Why? Taking measurements at irregular intervals is common, but most tools are primar

Datascope Analytics 516 Dec 29, 2022
Numenta published papers code and data

Numenta research papers code and data This repository contains reproducible code for selected Numenta papers. It is currently under construction and w

Numenta 293 Jan 06, 2023
NAVER BoostCamp Final Project

CV 14조 final project Super Resolution and Deblur module Inference code & Pretrained weight Repo SwinIR Deblur 실행 방법 streamlit run WebServer/Server_SRD

JiSeong Kim 5 Sep 06, 2022
Implementation of the paper: "SinGAN: Learning a Generative Model from a Single Natural Image"

SinGAN This is an unofficial implementation of SinGAN from someone who's been sitting right next to SinGAN's creator for almost five years. Please ref

35 Nov 10, 2022
Official implementation of "A Unified Objective for Novel Class Discovery", ICCV2021 (Oral)

A Unified Objective for Novel Class Discovery This is the official repository for the paper: A Unified Objective for Novel Class Discovery Enrico Fini

Enrico Fini 118 Dec 26, 2022
Arch-Net: Model Distillation for Architecture Agnostic Model Deployment

Arch-Net: Model Distillation for Architecture Agnostic Model Deployment The official implementation of Arch-Net: Model Distillation for Architecture A

MEGVII Research 22 Jan 05, 2023
Official implementation for NIPS'17 paper: PredRNN: Recurrent Neural Networks for Predictive Learning Using Spatiotemporal LSTMs.

PredRNN: A Recurrent Neural Network for Spatiotemporal Predictive Learning The predictive learning of spatiotemporal sequences aims to generate future

THUML: Machine Learning Group @ THSS 243 Dec 26, 2022
Deep Semisupervised Multiview Learning With Increasing Views (IEEE TCYB 2021, PyTorch Code)

Deep Semisupervised Multiview Learning With Increasing Views (ISVN, IEEE TCYB) Peng Hu, Xi Peng, Hongyuan Zhu, Liangli Zhen, Jie Lin, Huaibai Yan, Dez

3 Nov 19, 2022
torchsummaryDynamic: support real FLOPs calculation of dynamic network or user-custom PyTorch ops

torchsummaryDynamic Improved tool of torchsummaryX. torchsummaryDynamic support real FLOPs calculation of dynamic network or user-custom PyTorch ops.

Bohong Chen 1 Jan 07, 2022
A Python library that provides a simplified alternative to DBAPI 2

A Python library that provides a simplified alternative to DBAPI 2. It provides a facade in front of DBAPI 2 drivers.

Tony Locke 44 Nov 17, 2021
Deepfake Scanner by Deepware.

Deepware Scanner (CLI) This repository contains the command-line deepfake scanner tool with the pre-trained models that are currently used at deepware

deepware 110 Jan 02, 2023
Non-Official Pytorch implementation of "Face Identity Disentanglement via Latent Space Mapping" https://arxiv.org/abs/2005.07728 Using StyleGAN2 instead of StyleGAN

Face Identity Disentanglement via Latent Space Mapping - Implement in pytorch with StyleGAN 2 Description Pytorch implementation of the paper Face Ide

Daniel Roich 58 Dec 24, 2022
This repository contains the re-implementation of our paper deSpeckNet: Generalizing Deep Learning Based SAR Image Despeckling

deSpeckNet-TF-GEE This repository contains the re-implementation of our paper deSpeckNet: Generalizing Deep Learning Based SAR Image Despeckling publi

Adugna Mullissa 16 Sep 07, 2022
MIMO-UNet - Official Pytorch Implementation

MIMO-UNet - Official Pytorch Implementation This repository provides the official PyTorch implementation of the following paper: Rethinking Coarse-to-

Sungjin Cho 248 Jan 02, 2023