πŸ—Ί General purpose U-Network implemented in Keras for image segmentation

Overview

TF-Unet

General purpose U-Network implemented in Keras for image segmentation

Getting started β€’ Training β€’ Evaluation

Getting started

Looking for Jupyter notebooks? checkout the training, evaulation and prediction notebooks or run make jupyter to serve them locally. Looking for pre-trained weights? download them here.

Dependencies

To quickly get started make sure you have the following dependencies installed:

Setup

Clone (or download) the repository and cd into it

git clone https://github.com/juniorxsound/TF-Unet.git && cd TF-Unet

Next build the Docker image by simply running make build

The build process will pick either Dockerfile.cpu or Dockerfile.gpu based on your system

Training

This repository uses the ShapeDataset synthetic data generator written by Matterport (in Mask R-CNN). No download is needed, as all data is generated during runtime, here is a sample of the dataset

To start training, simply call make train which will start the training process using the parameters defined in train.py. A model will be saved at the end of the training process into the weights folder in SavedModel format.

If you are interested in following the training process, you can use make log during training to start a Tensorboard server with accuracy and loss metrics being updated every batch.

Tensorboard image here

If you want to train in a Jupyter notebook follow the Training notebook

Evaluation

To quickly evaluate download the pre-trained weights and unzip the contents into the weights folder. To run evaluation simply use make evaluate or the Jupyter Evaluation notebook.

The weights provided were trained for 50 epochs on 8000 samples with batch size of 18. Training takes 5 hours using 2 GTX 2080ti's and reaches 96.56% accuracy.

Prediction

See the Jupyter Prediction notebook.

Architecture

The implementation was inspired by U-Net: Convolutional Networks for Biomedical Image Segmentation

Thanks to

The original paper authors, this Keras UNet implementation, this Tensorflow UNet implementation and Mask R-CNN authors.

Owner
Or Fleisher
Engineer & artist building computational photography / CG / ML / volumetric things. Staff R&D Engineer at @nytimes πŸ’» Prev. @vimeo @Volume-GL @ViacomInc @ITPNYU
Or Fleisher
Segment axon and myelin from microscopy data using deep learning

Segment axon and myelin from microscopy data using deep learning. Written in Python. Using the TensorFlow framework. Based on a convolutional neural network architecture. Pixels are classified as eit

NeuroPoly 103 Nov 29, 2022
NeRD: Neural Reflectance Decomposition from Image Collections

NeRD: Neural Reflectance Decomposition from Image Collections Project Page | Video | Paper | Dataset Implementation for NeRD. A novel method which dec

Computergraphics (University of TΓΌbingen) 195 Dec 29, 2022
MVP Benchmark for Multi-View Partial Point Cloud Completion and Registration

MVP Benchmark: Multi-View Partial Point Clouds for Completion and Registration [NEWS] 2021-07-12 [NEW πŸŽ‰ ] The submission on Codalab starts! 2021-07-1

PL 93 Dec 21, 2022
Over9000 optimizer

Optimizers and tests Every result is avg of 20 runs. Dataset LR Schedule Imagenette size 128, 5 epoch Imagewoof size 128, 5 epoch Adam - baseline OneC

Mikhail Grankin 405 Nov 27, 2022
Code for the paper "Adversarially Regularized Autoencoders (ICML 2018)" by Zhao, Kim, Zhang, Rush and LeCun

ARAE Code for the paper "Adversarially Regularized Autoencoders (ICML 2018)" by Zhao, Kim, Zhang, Rush and LeCun https://arxiv.org/abs/1706.04223 Disc

Junbo (Jake) Zhao 399 Jan 02, 2023
Vignette is a face tracking software for characters using osu!framework.

Vignette is a face tracking software for characters using osu!framework. Unlike most solutions, Vignette is: Made with osu!framework, the game framewo

Vignette 412 Dec 28, 2022
Natural Intelligence is still a pretty good idea.

Human Learn Machine Learning models should play by the rules, literally. Project Goal Back in the old days, it was common to write rule-based systems.

vincent d warmerdam 641 Dec 26, 2022
PyTorch Code of "Memory In Memory: A Predictive Neural Network for Learning Higher-Order Non-Stationarity from Spatiotemporal Dynamics"

Memory In Memory Networks It is based on the paper Memory In Memory: A Predictive Neural Network for Learning Higher-Order Non-Stationarity from Spati

Yang Li 12 May 30, 2022
CompilerGym is a library of easy to use and performant reinforcement learning environments for compiler tasks

CompilerGym is a library of easy to use and performant reinforcement learning environments for compiler tasks

Facebook Research 721 Jan 03, 2023
A Fast and Stable GAN for Small and High Resolution Imagesets - pytorch

A Fast and Stable GAN for Small and High Resolution Imagesets - pytorch The official pytorch implementation of the paper "Towards Faster and Stabilize

Bingchen Liu 455 Jan 08, 2023
A compendium of useful, interesting, inspirational usage of pandas functions, each example will be an ipynb file

Pandas_by_examples A compendium of useful/interesting/inspirational usage of pandas functions, each example will be an ipynb file What is this reposit

Guangyuan(Frank) Li 32 Nov 20, 2022
TeST: Temporal-Stable Thresholding for Semi-supervised Learning

TeST: Temporal-Stable Thresholding for Semi-supervised Learning TeST Illustration Semi-supervised learning (SSL) offers an effective method for large-

Xiong Weiyu 1 Jul 14, 2022
A Gura parser implementation for Python

Gura Python parser This repository contains the implementation of a Gura (compliant with version 1.0.0) format parser in Python. Installation pip inst

Gura Config Lang 19 Jan 25, 2022
A Python library for differentiable optimal control on accelerators.

A Python library for differentiable optimal control on accelerators.

Google 80 Dec 21, 2022
Franka Emika Panda manipulator kinematics&dynamics simulation

pybullet_sim_panda Pybullet simulation environment for Franka Emika Panda Dependency pybullet, numpy, spatial_math_mini Simple example (please check s

0 Jan 20, 2022
PenguinSpeciesPredictionML - Basic model to predict Penguin species based on beak size and sex.

Penguin Species Prediction (ML) 🐧 πŸ‘¨πŸ½β€πŸ’» What? πŸ’» This project is a basic model using sklearn methods to predict Penguin species based on beak size

Tucker Paron 0 Jan 08, 2022
All course materials for the Zero to Mastery Machine Learning and Data Science course.

Zero to Mastery Machine Learning Welcome! This repository contains all of the code, notebooks, images and other materials related to the Zero to Maste

Daniel Bourke 1.6k Jan 08, 2023
PAthological QUpath Obsession - QuPath and Python conversations

PAQUO: PAthological QUpath Obsession Welcome to paquo πŸ‘‹ , a library for interacting with QuPath from Python. paquo's goal is to provide a pythonic in

Bayer AG 60 Dec 31, 2022
Azion the best solution of Edge Computing in the world.

Azion Edge Function docker action Create or update an Edge Functions on Azion Edge Nodes. The domain name is the key for decision to a create or updat

8 Jul 16, 2022
Sample code and notebooks for Vertex AI, the end-to-end machine learning platform on Google Cloud

Google Cloud Vertex AI Samples Welcome to the Google Cloud Vertex AI sample repository. Overview The repository contains notebooks and community conte

Google Cloud Platform 560 Dec 31, 2022