An implementation of the AlphaZero algorithm for Gomoku (also called Gobang or Five in a Row)

Overview

AlphaZero-Gomoku

This is an implementation of the AlphaZero algorithm for playing the simple board game Gomoku (also called Gobang or Five in a Row) from pure self-play training. The game Gomoku is much simpler than Go or chess, so that we can focus on the training scheme of AlphaZero and obtain a pretty good AI model on a single PC in a few hours.

References:

  1. AlphaZero: Mastering Chess and Shogi by Self-Play with a General Reinforcement Learning Algorithm
  2. AlphaGo Zero: Mastering the game of Go without human knowledge

Update 2018.2.24: supports training with TensorFlow!

Update 2018.1.17: supports training with PyTorch!

Example Games Between Trained Models

  • Each move with 400 MCTS playouts:
    playout400

Requirements

To play with the trained AI models, only need:

  • Python >= 2.7
  • Numpy >= 1.11

To train the AI model from scratch, further need, either:

  • Theano >= 0.7 and Lasagne >= 0.1
    or
  • PyTorch >= 0.2.0
    or
  • TensorFlow

PS: if your Theano's version > 0.7, please follow this issue to install Lasagne,
otherwise, force pip to downgrade Theano to 0.7 pip install --upgrade theano==0.7.0

If you would like to train the model using other DL frameworks, you only need to rewrite policy_value_net.py.

Getting Started

To play with provided models, run the following script from the directory:

python human_play.py  

You may modify human_play.py to try different provided models or the pure MCTS.

To train the AI model from scratch, with Theano and Lasagne, directly run:

python train.py

With PyTorch or TensorFlow, first modify the file train.py, i.e., comment the line

from policy_value_net import PolicyValueNet  # Theano and Lasagne

and uncomment the line

# from policy_value_net_pytorch import PolicyValueNet  # Pytorch
or
# from policy_value_net_tensorflow import PolicyValueNet # Tensorflow

and then execute: python train.py (To use GPU in PyTorch, set use_gpu=True and use return loss.item(), entropy.item() in function train_step in policy_value_net_pytorch.py if your pytorch version is greater than 0.5)

The models (best_policy.model and current_policy.model) will be saved every a few updates (default 50).

Note: the 4 provided models were trained using Theano/Lasagne, to use them with PyTorch, please refer to issue 5.

Tips for training:

  1. It is good to start with a 6 * 6 board and 4 in a row. For this case, we may obtain a reasonably good model within 500~1000 self-play games in about 2 hours.
  2. For the case of 8 * 8 board and 5 in a row, it may need 2000~3000 self-play games to get a good model, and it may take about 2 days on a single PC.

Further reading

My article describing some details about the implementation in Chinese: https://zhuanlan.zhihu.com/p/32089487

Owner
Junxiao Song
PhD, ECE, HKUST
Junxiao Song
PyTorch implementation of PP-LCNet: A Lightweight CPU Convolutional Neural Network

PyTorch implementation of PP-LCNet Reproduction of PP-LCNet architecture as described in PP-LCNet: A Lightweight CPU Convolutional Neural Network by C

Quan Nguyen (Fly) 47 Nov 02, 2022
Simple converter for deploying Stable-Baselines3 model to TFLite and/or Coral

Running SB3 developed agents on TFLite or Coral Introduction I've been using Stable-Baselines3 to train agents against some custom Gyms, some of which

Gary Briggs 16 Oct 11, 2022
Learning from Synthetic Humans, CVPR 2017

Learning from Synthetic Humans (SURREAL) Gül Varol, Javier Romero, Xavier Martin, Naureen Mahmood, Michael J. Black, Ivan Laptev and Cordelia Schmid,

Gul Varol 538 Dec 18, 2022
Generate vibrant and detailed images using only text.

CLIP Guided Diffusion From RiversHaveWings. Generate vibrant and detailed images using only text. See captions and more generations in the Gallery See

Clay M. 401 Dec 28, 2022
Structural Constraints on Information Content in Human Brain States

Structural Constraints on Information Content in Human Brain States Code accompanying the paper "The information content of brain states is explained

Leon Weninger 3 Sep 07, 2022
Machine Learning in Asset Management (by @firmai)

Machine Learning in Asset Management If you like this type of content then visit ML Quant site below: https://www.ml-quant.com/ Part One Follow this l

Derek Snow 1.5k Jan 02, 2023
Winners of DrivenData's Overhead Geopose Challenge

Winners of DrivenData's Overhead Geopose Challenge

DrivenData 22 Aug 04, 2022
Tool for installing and updating MiSTer cores and other files

MiSTer Downloader This tool installs and updates all the cores and other extra files for your MiSTer. It also updates the menu core, the MiSTer firmwa

72 Dec 24, 2022
A Broad Study on the Transferability of Visual Representations with Contrastive Learning

A Broad Study on the Transferability of Visual Representations with Contrastive Learning This repository contains code for the paper: A Broad Study on

Ashraful Islam 29 Nov 09, 2022
Pytorch Lightning Distributed Accelerators using Ray

Distributed PyTorch Lightning Training on Ray This library adds new PyTorch Lightning plugins for distributed training using the Ray distributed compu

167 Jan 02, 2023
Vision Transformer for 3D medical image registration (Pytorch).

ViT-V-Net: Vision Transformer for Volumetric Medical Image Registration keywords: vision transformer, convolutional neural networks, image registratio

Junyu Chen 192 Dec 20, 2022
TensorFlow port of PyTorch Image Models (timm) - image models with pretrained weights.

TensorFlow-Image-Models Introduction Usage Models Profiling License Introduction TensorfFlow-Image-Models (tfimm) is a collection of image models with

Martins Bruveris 227 Dec 20, 2022
A repository for interferometer controller code.

dses-interferometer-controller A repository for interferometer controller code, hardware, and simulations. See dses.science for more information on th

Eli Reed 1 Jan 17, 2022
[ICML 2021] Towards Understanding and Mitigating Social Biases in Language Models

Towards Understanding and Mitigating Social Biases in Language Models This repo contains code and data for evaluating and mitigating bias from generat

Paul Liang 42 Jan 03, 2023
🔮 Execution time predictions for deep neural network training iterations across different GPUs.

Habitat: A Runtime-Based Computational Performance Predictor for Deep Neural Network Training Habitat is a tool that predicts a deep neural network's

Geoffrey Yu 44 Dec 27, 2022
Generating retro pixel game characters with Generative Adversarial Networks. Dataset "TinyHero" included.

pixel_character_generator Generating retro pixel game characters with Generative Adversarial Networks. Dataset "TinyHero" included. Dataset TinyHero D

Agnieszka Mikołajczyk 88 Nov 17, 2022
IDA file loader for UF2, created for the DEFCON 29 hardware badge

UF2 Loader for IDA The DEFCON 29 badge uses the UF2 bootloader, which conveniently allows you to dump and flash the firmware over USB as a mass storag

Kevin Colley 6 Feb 08, 2022
RaceBERT -- A transformer based model to predict race and ethnicty from names

RaceBERT -- A transformer based model to predict race and ethnicty from names Installation pip install racebert Using a virtual environment is highly

Prasanna Parasurama 3 Nov 02, 2022
Time series annotation library.

CrowdCurio Time Series Annotator Library The CrowdCurio Time Series Annotation Library implements classification tasks for time series. Features Suppo

CrowdCurio 51 Sep 15, 2022
QuanTaichi evaluation suite

QuanTaichi: A Compiler for Quantized Simulations (SIGGRAPH 2021) Yuanming Hu, Jiafeng Liu, Xuanda Yang, Mingkuan Xu, Ye Kuang, Weiwei Xu, Qiang Dai, W

Taichi Developers 120 Jan 04, 2023