TRIQ implementation

Overview

TRIQ Implementation

TF-Keras implementation of TRIQ as described in Transformer for Image Quality Assessment.

Installation

  1. Clone this repository.
  2. Install required Python packages. The code is developed by PyCharm in Python 3.7. The requirements.txt document is generated by PyCharm, and the code should also be run in latest versions of the packages.

Training a model

An example of training TRIQ can be seen in train/train_triq.py. Argparser should be used, but the authors prefer to use dictionary with parameters being defined. It is easy to convert to take arguments. In principle, the following parameters can be defined:

args = {}
args['multi_gpu'] = 0 # gpu setting, set to 1 for using multiple GPUs
args['gpu'] = 0  # If having multiple GPUs, specify which GPU to use

args['result_folder'] = r'..\databases\experiments' # Define result path
args['n_quality_levels'] = 5  # Choose between 1 (MOS prediction) and 5 (distribution prediction)

args['transformer_params'] = [2, 32, 8, 64]

args['train_folders'] =  # Define folders containing training images
    [
    r'..\databases\train\koniq_normal',
    r'..\databases\train\koniq_small',
    r'..\databases\train\live'
    ]
args['val_folders'] =  # Define folders containing testing images
    [
    r'..\databases\val\koniq_normal',
    r'..\databases\val\koniq_small',
    r'..\databases\val\live'
    ]
args['koniq_mos_file'] = r'..\databases\koniq10k_images_scores.csv'  # MOS (distribution of scores) file for KonIQ database
args['live_mos_file'] = r'..\databases\live_mos.csv'   # MOS (standard distribution of scores) file for LIVE-wild database

args['backbone'] = 'resnet50' # Choose from ['resnet50', 'vgg16']
args['weights'] = r'...\pretrained_weights\resnet50_weights_tf_dim_ordering_tf_kernels_notop.h5'  # Define the path of ImageNet pretrained weights
args['initial_epoch'] = 0  # Define initial epoch for use in fine-tune

args['lr_base'] = 1e-4 / 2  # Define the back learning rate in warmup and rate decay approach
args['lr_schedule'] = True  # Choose between True and False, indicating if learning rate schedule should be used or not
args['batch_size'] = 32  # Batch size, should choose to fit in the GPU memory
args['epochs'] = 120  # Maximal epoch number, can set early stop in the callback or not

args['image_aug'] = True # Choose between True and False, indicating if image augmentation should be used or not

Predict image quality using the trained model

After TRIQ has been trained, and the weights have been stored in h5 file, it can be used to predict image quality with arbitrary sizes,

    args = {}
    args['n_quality_levels'] = 5
    args['backbone'] = 'resnet50'
    args['weights'] = r'..\\TRIQ.h5'
    model = create_triq_model(n_quality_levels=args['n_quality_levels'],
                              backbone=args['backbone'],])
    model.load_weights(args['weights'])

And then use ModelEvaluation to predict quality of image set.

In the "examples" folder, an example script examples\image_quality_prediction.py is provided to use the trained weights to predict quality of example images. In the "train" folder, an example script train\validation.py is provided to use the trained weights to predict quality of images in folders.

A potential issue is image shape mismatch. For example, if an image is too large, then line 146 in transformer_iqa.py should be changed to increase the pooling size. For example, it can be changed to self.pooling_small = MaxPool2D(pool_size=(4, 4)) or even larger.

Prepare datasets for model training

This work uses two publicly available databases: KonIQ-10k KonIQ-10k: An ecologically valid database for deep learning of blind image quality assessment by V. Hosu, H. Lin, T. Sziranyi, and D. Saupe; and LIVE-wild Massive online crowdsourced study of subjective and objective picture quality by D. Ghadiyaram, and A.C. Bovik

  1. The two databases were merged, and then split to training and testing sets. Please see README in databases for details.

  2. Make MOS files (note: do NOT include head line):

    For database with score distribution available, the MOS file is like this (koniq format):

        image path, voter number of quality scale 1, voter number of quality scale 2, voter number of quality scale 3, voter number of quality scale 4, voter number of quality scale 5, MOS or Z-score
        10004473376.jpg,0,0,25,73,7,3.828571429
        10007357496.jpg,0,3,45,47,1,3.479166667
        10007903636.jpg,1,0,20,73,2,3.78125
        10009096245.jpg,0,0,21,75,13,3.926605505
    

    For database with standard deviation available, the MOS file is like this (live format):

        image path, standard deviation, MOS or Z-score
        t1.bmp,18.3762,63.9634
        t2.bmp,13.6514,25.3353
        t3.bmp,18.9246,48.9366
        t4.bmp,18.2414,35.8863
    

    The format of MOS file ('koniq' or 'live') and the format of MOS or Z-score ('mos' or 'z_score') should also be specified in misc/imageset_handler/get_image_scores.

  3. In the train script in train/train_triq.py the folders containing training and testing images are provided.

  4. Pretrained ImageNet weights can be downloaded (see README in.\pretrained_weights) and pointed to in the train script.

Trained TRIQ weights

TRIQ has been trained on KonIQ-10k and LIVE-wild databases, and the weights file can be downloaded here.

State-of-the-art models

Other three models are also included in the work. The original implementations of metrics are employed, and they can be found below.

Koncept512 KonIQ-10k: An ecologically valid database for deep learning of blind image quality assessment

SGDNet SGDNet: An end-to-end saliency-guided deep neural network for no-reference image quality assessment

CaHDC End-to-end blind image quality prediction with cascaded deep neural network

Comparison results

We have conducted several experiments to evaluate the performance of TRIQ, please see results.pdf for detailed results.

Error report

In case errors/exceptions are encountered, please first check all the paths. After fixing the path isse, please report any errors in Issues.

FAQ

  • To be added

ViT (Vision Transformer) for IQA

This work is heavily inspired by ViT An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale. The module vit_iqa contains implementation of ViT for IQA, and mainly followed the implementation of ViT-PyTorch. Pretrained ViT weights can be downloaded here.

Owner
Junyong You
Junyong You
Cancer metastasis detection with neural conditional random field (NCRF)

NCRF Prerequisites Data Whole slide images Annotations Patch images Model Training Testing Tissue mask Probability map Tumor localization FROC evaluat

Baidu Research 731 Jan 01, 2023
Apache Flink

Apache Flink Apache Flink is an open source stream processing framework with powerful stream- and batch-processing capabilities. Learn more about Flin

The Apache Software Foundation 20.4k Dec 30, 2022
Implementation of Lie Transformer, Equivariant Self-Attention, in Pytorch

Lie Transformer - Pytorch (wip) Implementation of Lie Transformer, Equivariant Self-Attention, in Pytorch. Only the SE3 version will be present in thi

Phil Wang 78 Oct 26, 2022
SporeAgent: Reinforced Scene-level Plausibility for Object Pose Refinement

SporeAgent: Reinforced Scene-level Plausibility for Object Pose Refinement This repository implements the approach described in SporeAgent: Reinforced

Dominik Bauer 5 Jan 02, 2023
High performance Cross-platform Inference-engine, you could run Anakin on x86-cpu,arm, nv-gpu, amd-gpu,bitmain and cambricon devices.

Anakin2.0 Welcome to the Anakin GitHub. Anakin is a cross-platform, high-performance inference engine, which is originally developed by Baidu engineer

514 Dec 28, 2022
MXNet implementation for: Drop an Octave: Reducing Spatial Redundancy in Convolutional Neural Networks with Octave Convolution

Octave Convolution MXNet implementation for: Drop an Octave: Reducing Spatial Redundancy in Convolutional Neural Networks with Octave Convolution Imag

Meta Research 549 Dec 28, 2022
Guiding evolutionary strategies by (inaccurate) differentiable robot simulators @ NeurIPS, 4th Robot Learning Workshop

Guiding Evolutionary Strategies by Differentiable Robot Simulators In recent years, Evolutionary Strategies were actively explored in robotic tasks fo

Vladislav Kurenkov 4 Dec 14, 2021
《Dual-Resolution Correspondence Network》(NeurIPS 2020)

Dual-Resolution Correspondence Network Dual-Resolution Correspondence Network, NeurIPS 2020 Dependency All dependencies are included in asset/dualrcne

Active Vision Laboratory 45 Nov 21, 2022
Pytorch implementation of SELF-ATTENTIVE VAD, ICASSP 2021

SELF-ATTENTIVE VAD: CONTEXT-AWARE DETECTION OF VOICE FROM NOISE (ICASSP 2021) Pytorch implementation of SELF-ATTENTIVE VAD | Paper | Dataset Yong Rae

97 Dec 23, 2022
State-of-the-art language models can match human performance on many tasks

Status: Archive (code is provided as-is, no updates expected) Grade School Math [Blog Post] [Paper] State-of-the-art language models can match human p

OpenAI 259 Jan 08, 2023
Official code of our work, Unified Pre-training for Program Understanding and Generation [NAACL 2021].

PLBART Code pre-release of our work, Unified Pre-training for Program Understanding and Generation accepted at NAACL 2021. Note. A detailed documentat

Wasi Ahmad 138 Dec 30, 2022
This repository is the official implementation of the Hybrid Self-Attention NEAT algorithm.

This repository is the official implementation of the Hybrid Self-Attention NEAT algorithm. It contains the code to reproduce the results presented in the original paper: https://arxiv.org/abs/2112.0

Saman Khamesian 6 Dec 13, 2022
Official Pytorch implementation of "Unbiased Classification Through Bias-Contrastive and Bias-Balanced Learning (NeurIPS 2021)

Unbiased Classification Through Bias-Contrastive and Bias-Balanced Learning (NeurIPS 2021) Official Pytorch implementation of Unbiased Classification

Youngkyu 17 Jan 01, 2023
LSTM Neural Networks for Spectroscopic Studies of Type Ia Supernovae

Package Description The difficulties in acquiring spectroscopic data have been a major challenge for supernova surveys. snlstm is developed to provide

7 Oct 11, 2022
Python implementation of "Multi-Instance Pose Networks: Rethinking Top-Down Pose Estimation"

MIPNet: Multi-Instance Pose Networks This repository is the official pytorch python implementation of "Multi-Instance Pose Networks: Rethinking Top-Do

Rawal Khirodkar 57 Dec 12, 2022
(NeurIPS '21 Spotlight) IQ-Learn: Inverse Q-Learning for Imitation

Inverse Q-Learning (IQ-Learn) Official code base for IQ-Learn: Inverse soft-Q Learning for Imitation, NeurIPS '21 Spotlight IQ-Learn is an easy-to-use

Divyansh Garg 102 Dec 20, 2022
Collects many various multi-modal transformer architectures, including image transformer, video transformer, image-language transformer, video-language transformer and related datasets

The repository collects many various multi-modal transformer architectures, including image transformer, video transformer, image-language transformer, video-language transformer and related datasets

Jun Chen 139 Dec 21, 2022
Official implementation of Sparse Transformer-based Action Recognition

STAR Official implementation of S parse T ransformer-based A ction R ecognition Dataset download NTU RGB+D 60 action recognition of 2D/3D skeleton fro

Chonghan_Lee 15 Nov 02, 2022
Tensorflow implementation of the paper "HumanGPS: Geodesic PreServing Feature for Dense Human Correspondences", CVPR 2021.

HumanGPS: Geodesic PreServing Feature for Dense Human Correspondences Tensorflow implementation of the paper "HumanGPS: Geodesic PreServing Feature fo

Google Interns 50 Dec 21, 2022
a Pytorch easy re-implement of "YOLOX: Exceeding YOLO Series in 2021"

A pytorch easy re-implement of "YOLOX: Exceeding YOLO Series in 2021" 1. Notes This is a pytorch easy re-implement of "YOLOX: Exceeding YOLO Series in

91 Dec 26, 2022