[CVPR 2021] Unsupervised 3D Shape Completion through GAN Inversion

Overview

ShapeInversion

Paper

Junzhe Zhang, Xinyi Chen, Zhongang Cai, Liang Pan, Haiyu Zhao, Shuai Yi, Chai Kiat Yeo, Bo Dai, Chen Change Loy "Unsupervised 3D Shape Completion through GAN Inversion" CVPR 2021

Results

Setup

Environment

conda create -n shapeinversion python=3.7
conda activate shapeinversion
pip install torch==1.2.0 torchvision==0.4.0
pip install plyfile h5py Ninja matplotlib scipy

Datasets

Our work is extensively evaluated with several existing datasets. For the virtual scan benchmark (derived from ShapeNet), we use CRN's dataset. We would suggest you to get started with this dataset. For ball-holed partial shapes, we refer to PF-Net. For PartNet dataset, we download from MPC. For real scans processed from KITTI, MatterPort3D, and ScanNet, we get from pcl2pcl.

Get started

We provide pretrained tree-GAN models for you to directly start with the inversion stage. You can download them from Google drive or Baidu cloud (password: w1n9), and put them to the pretrained_models folder.

Shape completion

You can specify other class and other datasets, like real scans provided by pcl2pcl.

python trainer.py \
--dataset CRN \
--class_choice chair \
--inversion_mode completion \
--mask_type k_mask \
--save_inversion_path ./saved_results/CRN_chair \
--ckpt_load pretrained_models/chair.pt \
--dataset_path <your_dataset_directory>

Evaluating completion results

For datasets with GT, such as the above CRN_chair:

python eval_completion.py \
--eval_with_GT true \
--saved_results_path saved_results/CRN_chair

For datasets without GT:

python eval_completion.py \
--eval_with_GT false \
--saved_results_path <your_results_on_KITTI>

Giving multiple valid outputs

ShapeInversion is able to provide multiple valid complete shapes, especially when extreme incompleteness that causes ambiguity.

python trainer.py \
--dataset CRN \
--class_choice chair \
--inversion_mode diversity \
--save_inversion_path ./saved_results/CRN_chair_diversity \
--ckpt_load pretrained_models/chair.pt \
--dataset_path <your_dataset_directory>

Shape jittering

ShapeInversion is able to change an object into other plausible shapes of different geometries.

python trainer.py \
--dataset CRN \
--class_choice plane \
--save_inversion_path ./saved_results/CRN_plane_jittering  \
--ckpt_load pretrained_models/plane.pt \
--inversion_mode jittering \
--iterations 30 30 30 30 \
--dataset_path <your_dataset_directory>

Shape morphing

ShapeInversion enables morphing between two shapes.

python trainer.py \
--dataset CRN \
--class_choice chair \
--save_inversion_path ./saved_results/CRN_chair_morphing  \
--ckpt_load pretrained_models/chair.pt \
--inversion_mode morphing \
--dataset_path <your_dataset_directory>

Pretraining

You can also pretrain tree-GAN by yourself.

python pretrain_treegan.py \
--split train \
--class_choice chair \
--FPD_path ./evaluation/pre_statistics_chair.npz \
--ckpt_path ./pretrain_checkpoints/chair \
--knn_loss True \
--dataset_path <your_dataset_directory>

NOTE:

  • The inversion stage supports distributed training by simply adding --dist. It is tested on slurm as well.
  • The hyperparameters provided may not be optimal, feel free to tune them.
  • Smaller batch size for pretraining is totally fine.

Acknowledgement

The code is in part built on tree-GAN and DGP. Besides, CD and EMD are borrowed from ChamferDistancePytorch and MSN respectively, both of which are included in the external folder for convenience.

Citation

@inproceedings{zhang2021unsupervised,
    title = {Unsupervised 3D Shape Completion through GAN Inversion},
    author = {Zhang, Junzhe and Chen, Xinyi and Cai, Zhongang and Pan, Liang and Zhao, Haiyu 
    and Yi, Shuai and Yeo, Chai Kiat and Dai, Bo and Loy, Chen Change},
    booktitle = {CVPR},
    year = {2021}}
TensorFlow ROCm port

Documentation TensorFlow is an end-to-end open source platform for machine learning. It has a comprehensive, flexible ecosystem of tools, libraries, a

ROCm Software Platform 622 Jan 09, 2023
code for paper "Not All Unlabeled Data are Equal: Learning to Weight Data in Semi-supervised Learning" by Zhongzheng Ren*, Raymond A. Yeh*, Alexander G. Schwing.

Not All Unlabeled Data are Equal: Learning to Weight Data in Semi-supervised Learning Overview This code is for paper: Not All Unlabeled Data are Equa

Jason Ren 22 Nov 23, 2022
Transfer Learning Shootout for PyTorch's model zoo (torchvision)

pytorch-retraining Transfer Learning shootout for PyTorch's model zoo (torchvision). Load any pretrained model with custom final layer (num_classes) f

Alexander Hirner 169 Jun 29, 2022
This repository contains the source code of an efficient 1D probabilistic model for music time analysis proposed in ICASSP2022 venue.

Jump Reward Inference for 1D Music Rhythmic State Spaces An implementation of the probablistic jump reward inference model for music rhythmic informat

Mojtaba Heydari 25 Dec 16, 2022
SCI-AIDE : High-fidelity Few-shot Histopathology Image Synthesis for Rare Cancer Diagnosis

SCI-AIDE : High-fidelity Few-shot Histopathology Image Synthesis for Rare Cancer Diagnosis Pretrained Models In this work, we created synthetic tissue

Emirhan Kurtuluş 1 Feb 07, 2022
Code release of paper Improving neural implicit surfaces geometry with patch warping

NeuralWarp: Improving neural implicit surfaces geometry with patch warping Project page | Paper Code release of paper Improving neural implicit surfac

François Darmon 167 Dec 30, 2022
Source code for "Pack Together: Entity and Relation Extraction with Levitated Marker"

PL-Marker Source code for Pack Together: Entity and Relation Extraction with Levitated Marker. Quick links Overview Setup Install Dependencies Data Pr

THUNLP 173 Dec 30, 2022
Semantic Segmentation in Pytorch

PyTorch Semantic Segmentation Introduction This repository is a PyTorch implementation for semantic segmentation / scene parsing. The code is easy to

Hengshuang Zhao 1.2k Jan 01, 2023
Pacman-AI - AI project designed by UC Berkeley. Designed reflex and minimax agents for the game Pacman.

Pacman AI Jussi Doherty CAP 4601 - Introduction to Artificial Intelligence - Fall 2020 Python version 3.0+ Source of this project This repo contains a

Jussi Doherty 1 Jan 03, 2022
Exploring Simple Siamese Representation Learning

G-SimSiam A PyTorch implementation which refers to repo for the paper Exploring Simple Siamese Representation Learning by Xinlei Chen & Kaiming He Add

zhuyun 1 Dec 19, 2021
Аналитика доходности инвестиционного портфеля в Тинькофф брокере

Аналитика доходности инвестиционного портфеля Тиньков Видео на YouTube Для работы скрипта нужно установить три переменных окружения: export TINKOFF_TO

Alexey Goloburdin 64 Dec 17, 2022
This is an easy python software which allows to sort images with faces by gender and after by age.

Gender-age Classifier This is an easy python software which allows to sort images with faces by gender and after by age. Usage First install Deepface

Claudio Ciccarone 6 Sep 17, 2022
Duke Machine Learning Winter School: Computer Vision 2022

mlwscv2002 Welcome to the Duke Machine Learning Winter School: Computer Vision 2022! The MLWS-CV includes 3 hands-on training sessions on implementing

Duke + Data Science (+DS) 9 May 25, 2022
Official implementation of NLOS-OT: Passive Non-Line-of-Sight Imaging Using Optimal Transport (IEEE TIP, accepted)

NLOS-OT Official implementation of NLOS-OT: Passive Non-Line-of-Sight Imaging Using Optimal Transport (IEEE TIP, accepted) Description In this reposit

Ruixu Geng(耿瑞旭) 16 Dec 16, 2022
A way to store images in YAML.

YAMLImg A way to store images in YAML. I made this after seeing Roadcrosser's JSON-G because it was too inspiring to ignore this opportunity. Installa

5 Mar 14, 2022
COVID-VIT: Classification of Covid-19 from CT chest images based on vision transformer models

COVID-ViT COVID-VIT: Classification of Covid-19 from CT chest images based on vision transformer models This code is to response to te MIA-COV19 compe

17 Dec 30, 2022
PyElecCL - Electron Monte Carlo Second Checks

PyElecCL Python program to perform second checks for electron Monte Carlo radiat

Reese Haywood 3 Feb 22, 2022
The code for two papers: Feedback Transformer and Expire-Span.

transformer-sequential This repo contains the code for two papers: Feedback Transformer Expire-Span The training code is structured for long sequentia

Facebook Research 125 Dec 25, 2022
Neural style transfer as a class in PyTorch

pt-styletransfer Neural style transfer as a class in PyTorch Based on: https://github.com/alexis-jacq/Pytorch-Tutorials Adds: StyleTransferNet as a cl

Tyler Kvochick 31 Jun 27, 2022
Code for the prototype tool in our paper "CoProtector: Protect Open-Source Code against Unauthorized Training Usage with Data Poisoning".

CoProtector Code for the prototype tool in our paper "CoProtector: Protect Open-Source Code against Unauthorized Training Usage with Data Poisoning".

Zhensu Sun 1 Oct 26, 2021