Official Pytorch Implementation of Adversarial Instance Augmentation for Building Change Detection in Remote Sensing Images.

Overview

IAug_CDNet

Official Implementation of Adversarial Instance Augmentation for Building Change Detection in Remote Sensing Images.

Overview

We propose a novel data-level solution, namely Instance-level change Augmentation (IAug), to generate bi-temporal images that contain changes involving plenty and diverse buildings by leveraging generative adversarial training. The key of IAug is to blend synthesized building instances onto appropriate positions of one of the bi-temporal images. To achieve this, a building generator is employed to produce realistic building images that are consistent with the given layouts. Diverse styles are later transferred onto the generated images. We further propose context-aware blending for a realistic composite of the building and the background. We augment the existing CD datasets and also design a simple yet effective CD model - CDNet. Our method (CDNet + IAug) has achieved state-of-the-art results in two building CD datasets (LEVIR-CD and WHU-CD). Interestingly, we achieve comparable results with only 20% of the training data as the current state-of-the-art methods using 100% data. Extensive experiments have validated the effectiveness of the proposed IAug. Our augmented dataset has a lower risk of class imbalance than the original one. Conventional learning on the synthesized dataset outperforms several popular cost-sensitive algorithms on the original dataset.

Building Generator

See building generator for details.

Synthesized images (256 * 256) by the generator (trained on the AIRS building dataset).syn_example_airs

Synthesized images (64 * 64) by the generator (trained on the Inria building dataset).syn_example_inria

Installation

This code requires PyTorch 1.0 and python 3+. Please install dependencies by

pip install -r requirements.txt

Generating Images Using Pretrained Model

Once the dataset is ready, the result images can be generated using pretrained models.

  1. Download the tar of the pretrained models from the Google Drive

  2. Generate images using the pretrained model.

    python test.py --model pix2pix --name $pretrained_folder --results_dir $results_dir --dataset_mode custom --label_dir $label_dir --label_nc 2 --batchSize $batchSize --load_size $size --crop_size $size --no_instance --which_epoch lastest

    pretrained_folder is the directory name of the checkpoint file downloaded in Step 1, results_dir is the directory name to save the synthesized images, label_dir is the directory name of the semantic labels, size is the size of the label map fed to the generator.

  3. The outputs images are stored at results_dir. You can view them using the autogenerated HTML file in the directory.

For simplicity, we also provide the test script in scripts/run_test.sh, one can modify the label_dir and name and then run the script.

Training New Models

New models can be trained with the following commands.

  1. Prepare the dataset. You can first prepare the building image patches and corresponding label maps in two folders (image_dir, label_dir).

  2. Train the model.

# To train on your own custom dataset
python train.py --name [experiment_name] --dataset_mode custom --label_dir [label_dir] -- image_dir [image_dir] --label_nc 2

There are many options you can specify. Please use python train.py --help. The specified options are printed to the console. To specify the number of GPUs to utilize, use --gpu_ids. If you want to use the second and third GPUs for example, use --gpu_ids 1,2.

To log training, use --tf_log for Tensorboard. The logs are stored at [checkpoints_dir]/[name]/logs.

Acknowledge

This code borrows heavily from spade.

Color Transfer

See Color Transfer for deteils.

We resort to a simple yet effective nonlearning approach to match the color distribution of the two image sets (GAN-generated images and original images in the change detection dataset).

color_transfer

Requirements

  • Matlab

Usage

We provide two demos to show the color transfer.

When you do not have the object mask. You can edit the file ColorTransferDemo.m, modify the file path of the Im_target and Im_source. After you run this file, the transfered image is saved as result_Image.jpg.

When you do have both the building image and the object mask. You can edit the file ColorTransferDemo_with_mask.m, modify the file path of the Im_target, Im_source, m_target and m_source. After you run this file, the transfered image is saved as result_Image.jpg.

Acknowledge

This code borrows heavily from https://github.com/AissamDjahnine/ColorTransfer.

Shadow Extraction

We show a simple shadow extraction method. The extracted shadow information can be used to make a more realistic image composite in the latter process.

shadow_extraction

We provide some examples for shadow extraction. The samples are in the folder samples\shadow_sample.

Usage

You can edit the file extract_shadow.py and modify the path of the image_folder, label_folder and out_folder. Make sure that the image files are in image_folder and the corresponding label files are in label_folder. Run the following script:

python extract_shadow.py

Once you have successfully run the python file, the results can be found in the out folder.

Instance augmentation

Here, we provide the python implementation of instance augmentation.

image-20210413152845314

We provide some examples for instance augmentation. The samples are in the folder samples\SYN_CD.

Usage

You can edit the file composite_CD_sample.py and modify the following values:

#  first define the some paths
A_folder = r'samples\LEVIR\A'
B_folder = r'samples\LEVIR\B'
L_folder = r'samples\LEVIR\label'
ref_folder = r'samples\LEVIR\ref'
#  instance path
src_folder = r'samples\SYN_CD\image' #test
label_folder = r'samples\SYN_CD\shadow'  # test
out_folder = r'samples\SYN_CD\out_sample'
os.makedirs(out_folder, exist_ok=True)
# how many instance to paste per sample
M = 50

Then, run the following script:

python composite_CD_sample.py

Once you have successfully run the python file, the results can be found in the out folder.

CDNet

Coming soon~~~~

Citation

If you use this code for your research, please cite our paper:

@Article{chen2021,
    title={Adversarial Instance Augmentation for Building Change Detection in Remote Sensing Images},
    author={Hao Chen, Wenyuan Li and Zhenwei Shi},
    year={2021},
    journal={IEEE Transactions on Geoscience and Remote Sensing},
    volume={},
    number={},
    pages={1-16},
    doi={10.1109/TGRS.2021.3066802}
}
Owner
keep forward
UnpNet - Rethinking 3-D LiDAR Point Cloud Segmentation(IEEE TNNLS)

UnpNet Citation Please cite the following paper if you use this repository in your reseach. @article {PMID:34914599, Title = {Rethinking 3-D LiDAR Po

Shijie Li 4 Jul 15, 2022
Weakly-supervised object detection.

Wetectron Wetectron is a software system that implements state-of-the-art weakly-supervised object detection algorithms. Project CVPR'20, ECCV'20 | Pa

NVIDIA Research Projects 342 Jan 05, 2023
Code for the paper "Asymptotics of ℓ2 Regularized Network Embeddings"

README Code for the paper Asymptotics of L2 Regularized Network Embeddings. Requirements Requires Stellargraph 1.2.1, Tensorflow 2.6.0, scikit-learm 0

Andrew Davison 0 Jan 06, 2022
Using some basic methods to show linkages and transformations of robotic arms

roboticArmVisualizer Python GUI application to create custom linkages and adjust joint angles. In the future, I plan to add 2d inverse kinematics solv

Sandesh Banskota 1 Nov 19, 2021
One-Shot Neural Ensemble Architecture Search by Diversity-Guided Search Space Shrinking

One-Shot Neural Ensemble Architecture Search by Diversity-Guided Search Space Shrinking This is an official implementation for NEAS presented in CVPR

Multimedia Research 19 Sep 08, 2022
3D-CariGAN: An End-to-End Solution to 3D Caricature Generation from Normal Face Photos

3D-CariGAN: An End-to-End Solution to 3D Caricature Generation from Normal Face Photos This repository contains the source code and dataset for the pa

54 Oct 09, 2022
Largest list of models for Core ML (for iOS 11+)

Since iOS 11, Apple released Core ML framework to help developers integrate machine learning models into applications. The official documentation We'v

Kedan Li 5.6k Jan 08, 2023
Image data augmentation scheduler for albumentations transforms

albu_scheduler Scheduler for albumentations transforms based on PyTorch schedulers interface Usage TransformMultiStepScheduler import albumentations a

19 Aug 04, 2021
Deep Learning segmentation suite designed for 2D microscopy image segmentation

Deep Learning segmentation suite dessigned for 2D microscopy image segmentation This repository provides researchers with a code to try different enco

7 Nov 03, 2022
Several simple examples for popular neural network toolkits calling custom CUDA operators.

Neural Network CUDA Example Several simple examples for neural network toolkits (PyTorch, TensorFlow, etc.) calling custom CUDA operators. We provide

WeiYang 798 Jan 01, 2023
dualFace: Two-Stage Drawing Guidance for Freehand Portrait Sketching (CVMJ)

dualFace dualFace: Two-Stage Drawing Guidance for Freehand Portrait Sketching (CVMJ) We provide python implementations for our CVM 2021 paper "dualFac

Haoran XIE 46 Nov 10, 2022
Scalable Optical Flow-based Image Montaging and Alignment

SOFIMA SOFIMA (Scalable Optical Flow-based Image Montaging and Alignment) is a tool for stitching, aligning and warping large 2d, 3d and 4d microscopy

Google Research 16 Dec 21, 2022
DNA-RECON { Automatic Web Reconnaissance Tool }

ABOUT TOOL : DNA-RECON is an automatic web reconnaissance tool written in python. This tool made for reconnaissance and information gathering with an

NIKUNJ BHATT 25 Aug 11, 2021
Recommendationsystem - Movie-recommendation - matrixfactorization colloborative filtering recommendation system user

recommendationsystem matrixfactorization colloborative filtering recommendation

kunal jagdish madavi 1 Jan 01, 2022
HCQ: Hybrid Contrastive Quantization for Efficient Cross-View Video Retrieval

HCQ: Hybrid Contrastive Quantization for Efficient Cross-View Video Retrieval [toc] 1. Introduction This repository provides the code for our paper at

13 Dec 08, 2022
Classic Papers for Beginners and Impact Scope for Authors.

There have been billions of academic papers around the world. However, maybe only 0.0...01% among them are valuable or are worth reading. Since our limited life has never been forever, TopPaper provi

Qiulin Zhang 228 Dec 18, 2022
The Official TensorFlow Implementation for SPatchGAN (ICCV2021)

SPatchGAN: Official TensorFlow Implementation Paper "SPatchGAN: A Statistical Feature Based Discriminator for Unsupervised Image-to-Image Translation"

39 Dec 30, 2022
Code for paper "Vocabulary Learning via Optimal Transport for Neural Machine Translation"

**Codebase and data are uploaded in progress. ** VOLT(-py) is a vocabulary learning codebase that allows researchers and developers to automaticaly ge

416 Jan 09, 2023
PyTorch implementation of EfficientNetV2

[NEW!] Check out our latest work involution accepted to CVPR'21 that introduces a new neural operator, other than convolution and self-attention. PyTo

Duo Li 375 Jan 03, 2023
Understanding Hyperdimensional Computing for Parallel Single-Pass Learning

Understanding Hyperdimensional Computing for Parallel Single-Pass Learning Authors: Tao Yu* Yichi Zhang* Zhiru Zhang Christopher De Sa *: Equal Contri

Cornell RelaxML 4 Sep 08, 2022