Diaformer: Automatic Diagnosis via Symptoms Sequence Generation

Overview

Diaformer

Diaformer: Automatic Diagnosis via Symptoms Sequence Generation (AAAI 2022)

Diaformer is an efficient model for automatic diagnosis via symptoms sequence generation. It takes the sequence of symptoms as input, and predicts the inquiry symptoms in the way of sequence generation.

Figure 1: Illustration of symptom attention framework.

Requirements

Our experiments are conducted on Python 3.8 and Pytorch == 1.8.0. The main requirements are:

  • transformers==2.1.1
  • torch
  • numpy
  • tqdm
  • sklearn
  • keras
  • boto3

In the root directory, run following command to install the required libraries.

pip install -r requirement.txt

Usage

  1. Download data

    Download the datasets, then decompress them and put them in the corrsponding documents in \data. For example, put the data of Synthetic Dataset under data/synthetic_dataset.

    The dataset can be downloaded as following links:

  2. Build data

    Switch to the corresponding directory of the dataset and just run preprocess.py to preprocess data and generate a vocabulary of symptoms.

  3. Train and test

    Train and test models by the follow commands.

    Diaformer

    # Train and test on Diaformer
    # Run on MuZhi dataset
    python Diaformer.py --dataset_path data/muzhi_dataset --batch_size 16 --lr 5e-5 --min_probability 0.009 --max_turn 20 --start_test 10 
    
    # Run on Dxy dataset
    python Diaformer.py --dataset_path data/dxy_dataset --batch_size 16 --lr 5e-5 --min_probability 0.012 --max_turn 20 --start_test 10 
    
    # Run on Synthetic dataset
    python Diaformer.py --dataset_path data/synthetic_dataset --batch_size 16 --lr 5e-5 --min_probability 0.01 --max_turn 20 --start_test 10

    Diaformer_GPT2

    # Train and test on GPT2 variant of Diaformer
    python GPT2_variant.py --dataset_path data/synthetic_dataset --batch_size 16 --lr 5e-5 --min_probability 0.01 --max_turn 20 --start_test 10

    Diaformer_UniLM

    # Train and test on UniLM variant of Diaformer
    python UniLM_variant.py --dataset_path data/synthetic_dataset --batch_size 16 --lr 5e-5 --min_probability 0.01 --max_turn 20 --start_test 10

    Ablation study

    # run ablation study
    # w/o Sequence Shuffle
    python Diaformer.py --dataset_path data/synthetic_dataset --batch_size 16 --lr 5e-5 --min_probability 0.01 --max_turn 20 --start_test 10 --no_sequence_shuffle
    
    # w/o Synchronous Learning
    python Diaformer.py --dataset_path data/synthetic_dataset --batch_size 16 --lr 5e-5 --min_probability 0.01 --max_turn 20 --start_test 10 --no_synchronous_learning
    
    # w/o Repeated Sequence
    python Diaformer.py --dataset_path data/synthetic_dataset --batch_size 16 --lr 5e-5 --min_probability 0.01 --max_turn 20 --start_test 10 --no_repeated_sequence

    Generative inference

    # save the model
    python Diaformer.py --dataset_path data/synthetic_dataset --batch_size 16 --lr 5e-5 --min_probability 0.01 --max_turn 20 --start_test 10 --model_output_path models
    # use the trained model to output the results
    python predict.py --dataset_path data/synthetic_dataset --min_probability 0.01 --max_turn 20 --pretrained_model models/ --result_output_path results.json
Owner
Junying Chen
Junying Chen
AI_Assistant - This is a Python based Voice Assistant.

This is a Python based Voice Assistant. This was programmed to increase my understanding of python and also how the in-general Voice Assistants work.

1 Jan 06, 2022
Lattice methods in TensorFlow

TensorFlow Lattice TensorFlow Lattice is a library that implements constrained and interpretable lattice based models. It is an implementation of Mono

504 Dec 20, 2022
skweak: A software toolkit for weak supervision applied to NLP tasks

Labelled data remains a scarce resource in many practical NLP scenarios. This is especially the case when working with resource-poor languages (or text domains), or when using task-specific labels wi

Norsk Regnesentral (Norwegian Computing Center) 850 Dec 28, 2022
Princeton NLP's pre-training library based on fairseq with DeepSpeed kernel integration 🚃

This repository provides a library for efficient training of masked language models (MLM), built with fairseq. We fork fairseq to give researchers mor

Princeton Natural Language Processing 92 Dec 27, 2022
New Modeling The Background CodeBase

Modeling the Background for Incremental Learning in Semantic Segmentation This is the updated official PyTorch implementation of our work: "Modeling t

Fabio Cermelli 9 Dec 28, 2022
Levenshtein and Hamming distance computation

distance - Utilities for comparing sequences This package provides helpers for computing similarities between arbitrary sequences. Included metrics ar

112 Dec 22, 2022
🤗Transformers: State-of-the-art Natural Language Processing for Pytorch and TensorFlow 2.0.

State-of-the-art Natural Language Processing for PyTorch and TensorFlow 2.0 🤗 Transformers provides thousands of pretrained models to perform tasks o

Hugging Face 77.3k Jan 03, 2023
Python library to make development of portfolio analysis faster and easier

Trafalgar Python library to make development of portfolio analysis faster and easier Installation 🔥 For the moment, Trafalgar is still in beta develo

Santosh Passoubady 641 Jan 01, 2023
NLP - Machine learning

Flipkart-product-reviews NLP - Machine learning About Product reviews is an essential part of an online store like Flipkart’s branding and marketing.

Harshith VH 1 Oct 29, 2021
BERN2: an advanced neural biomedical namedentity recognition and normalization tool

BERN2 We present BERN2 (Advanced Biomedical Entity Recognition and Normalization), a tool that improves the previous neural network-based NER tool by

DMIS Laboratory - Korea University 99 Jan 06, 2023
Trex is a tool to match semantically similar functions based on transfer learning.

Trex is a tool to match semantically similar functions based on transfer learning.

62 Dec 28, 2022
A simple command line tool for text to image generation, using OpenAI's CLIP and a BigGAN

artificial intelligence cosmic love and attention fire in the sky a pyramid made of ice a lonely house in the woods marriage in the mountains lantern

Phil Wang 2.3k Jan 01, 2023
Japanese Long-Unit-Word Tokenizer with RemBertTokenizerFast of Transformers

Japanese-LUW-Tokenizer Japanese Long-Unit-Word (国語研長単位) Tokenizer for Transformers based on 青空文庫 Basic Usage from transformers import RemBertToken

Koichi Yasuoka 3 Dec 22, 2021
A PyTorch Implementation of End-to-End Models for Speech-to-Text

speech Speech is an open-source package to build end-to-end models for automatic speech recognition. Sequence-to-sequence models with attention, Conne

Awni Hannun 647 Dec 25, 2022
MRC approach for Aspect-based Sentiment Analysis (ABSA)

B-MRC MRC approach for Aspect-based Sentiment Analysis (ABSA) Paper: Bidirectional Machine Reading Comprehension for Aspect Sentiment Triplet Extracti

Phuc Phan 1 Apr 05, 2022
This project uses word frequency and Term Frequency-Inverse Document Frequency to summarize a text.

Text Summarizer This project uses word frequency and Term Frequency-Inverse Document Frequency to summarize a text. Team Members This mini-project was

1 Nov 16, 2021
Word Bot for JKLM Bomb Party

Word Bot for JKLM Bomb Party A bot for Bomb Party on https://www.jklm.fun (Only English) Requirements pynput pyperclip pyautogui Usage: Step 1: Run th

Nicolas 7 Oct 30, 2022
Perform sentiment analysis on textual data that people generally post on websites like social networks and movie review sites.

Sentiment Analyzer The goal of this project is to perform sentiment analysis on textual data that people generally post on websites like social networ

Madhusudan.C.S 53 Mar 01, 2022
Ecommerce product title recognition package

revizor This package solves task of splitting product title string into components, like type, brand, model and article (or SKU or product code or you

Bureaucratic Labs 16 Mar 03, 2022