This project is based on our SIGGRAPH 2021 paper, ROSEFusion: Random Optimization for Online DenSE Reconstruction under Fast Camera Motion .

Overview

ROSEFusion 🌹

This project is based on our SIGGRAPH 2021 paper, ROSEFusion: Random Optimization for Online DenSE Reconstruction under Fast Camera Motion .

Introduction

ROSEFsuion is proposed to tackle the difficulties in fast-motion camera tracking using random optimization with depth information only. Our method attains good quality pose tracking under fast camera motion in a realtime framerate without including loop closure or global pose optimization.

Installation

The code is based on C++ and CUDA with the support of:

  • Pangolin
  • OpenCV with CUDA (v.4.5 is required, for instance you can follow the link)
  • Eigen
  • CUDA (v.11 and above is required)

Befor building, please make sure the architecture (sm_xx and compute_xx) in the L22 of CMakeLists.txt is compatible with your own graphics card.

Our code has been tested with Nvidia GeForce RTX 2080 SUPER on Ubuntu 16.04.

[Option] Test with Docker

We have already upload a docker image with all the lib, code and data. Please download the image from the google drive.

Prepare

Make sure you have successfully installed the docker and nvidia docker. Once the environment is ready, you can using following commands to boot the docker image:

sudo docker load -i rosefusion_docker.tar 
sudo docker run -it  --gpus all jiazhao/rosefusion:v7 /bin/bash

And please check the architecture in the L22 of /home/code/ROSEFusion-main/CMakeList.txt is compatible with your own graphics card. If not, change the sm_xx and compute_xx, then rebuild the ROSEFusion.

QuickStart

All the data and configuration files are ready for using. You can find "run_example.sh" and "run_stairwell.sh" in /home/code/ROSEFusion-main/build. After running the scripts, the trajectory and reconstuciton results woulSd be generated in /home/code/rosefusion_xxx_data.

Configuration File

We use the following configuration files to make the parameters setting easier. There are four types of configuration files.

  • seq_generation_config.yaml: data information
  • camera_config.yaml: camera and image information.
  • data_config.yaml: output path, sequence file path and parameters of the volume.
  • controller_config.yaml: visualization, saving and parameters of tacking.

The seq_generation_config.yaml is only used in data preparation, and the other three types of configuration files are necessary to run the fusion part. The configuration files of many common datasets are given in [type]_config/ directory, you can change the settings to fit your own dataset.

Data Preparation

The details of data prepartiation can be found in src/seq_gen.cpp. By using the seq_generation_config.yaml introduced above, you can run the program:

./seq_gen  sequence_information.yaml

Once finished, there will be a .seq file containing all the information of the sequence.

Particle Swarm Template

We share the same pre-sampled PST as we used in our paper. Each PST is saved as an N×6 image and the N represents the number of particles. You can find the .tiff images in PST dicrectory, and please prelace the PST path in controller_config.yaml with your own path.

Running

To run the fusion code, you need to provide the camera_config.yaml, data_config.yaml and controller_config.yaml. We already share configuration files of many common datasets in ./camera_config, ./data_config, /controller_config. All the parameters of configuration can be modified as you want. With all the preparation done, you can run the code below:

./ROSEFsuion  your_camera_config.yaml your_data_config.yaml your_controller_config.yaml

For a quick start, you can download and use a small size synthesis seq file and related configuration files. Here is a preview.

FastCaMo Dataset

We present the Fast Camera Motion dataset, which contains both synthesis and real captured sequences. You are welcome to download the sequences and take a try.

FastCaMo-Synth

With 10 diverse room-scale scenes from Replica Dataset, we render the color images and depth maps along the synthesis trajectories. The raw sequences are provided in FastCaMo-synth-data(raw).zip, and we also provide the FastCaMo-synth-data(noise).zip with synthesis noise. We use the same noise model as simkinect. For evaluation, you can download the ground truth trajectories.

FastCaMo-Real

There are 12 real captured RGB-D sequences with fast camera motions are released. Each sequence is recorded in a challenging scene like gym or stairwell by using Azure Kinect DK. We offer a full and dense reconstruction scanned using the high-end laser scanner, serving as ground truth. However, The original file is extremely large, we will share the dense reconstruction in another platform or release the sub-sampled version only.

Citation

If you find our work useful in your research, please consider citing:

@article {zhang_sig21,
    title = {ROSEFusion: Random Optimization for Online Dense Reconstruction under Fast Camera Motion},
    author = {Jiazhao Zhang and Chenyang Zhu and Lintao Zheng and Kai Xu},
    journal = {ACM Transactions on Graphics (SIGGRAPH 2021)},
    volume = {40},
    number = {4},
    year = {2021}
}

Acknowledgments

Our code is inspired by KinectFusionLib.

This is an open-source version of ROSEFusion, some functions have been rewritten to avoid certain license. It would not be expected to reproduce the result exactly, but the result is almost the same.

License

The source code is released under GPLv3 license.

Contact

If you have any questions, feel free to email Jiazhao Zhang at [email protected].

Lightweight, Python library for fast and reproducible experimentation :microscope:

Steppy What is Steppy? Steppy is a lightweight, open-source, Python 3 library for fast and reproducible experimentation. Steppy lets data scientist fo

minerva.ml 134 Jul 10, 2022
An end-to-end PyTorch framework for image and video classification

What's New: March 2021: Added RegNetZ models November 2020: Vision Transformers now available, with training recipes! 2020-11-20: Classy Vision v0.5 R

Facebook Research 1.5k Dec 31, 2022
The InterScript dataset contains interactive user feedback on scripts generated by a T5-XXL model.

Interscript The Interscript dataset contains interactive user feedback on a T5-11B model generated scripts. Dataset data.json contains the data in an

AI2 8 Dec 01, 2022
Perform Linear Classification with Multi-way Data

MultiwayClassification This is an R package to perform linear classification for data with multi-way structure. The distance-weighted discrimination (

Eric F. Lock 2 Dec 15, 2020
Harmonic Memory Networks for Graph Completion

HMemNetworks Code and documentation for Harmonic Memory Networks, a series of models for compositionally assembling representations of graph elements

mlalisse 0 Oct 27, 2021
Supplementary code for the experiments described in the 2021 ISMIR submission: Leveraging Hierarchical Structures for Few Shot Musical Instrument Recognition.

Music Trees Supplementary code for the experiments described in the 2021 ISMIR submission: Leveraging Hierarchical Structures for Few Shot Musical Ins

Hugo Flores García 32 Nov 22, 2022
Code to go with the paper "Decentralized Bayesian Learning with Metropolis-Adjusted Hamiltonian Monte Carlo"

dblmahmc Code to go with the paper "Decentralized Bayesian Learning with Metropolis-Adjusted Hamiltonian Monte Carlo" Requirements: https://github.com

1 Dec 17, 2021
Efficient Multi Collection Style Transfer Using GAN

Proposed a new model that can make style transfer from single style image, and allow to transfer into multiple different styles in a single model.

Zhaozheng Shen 2 Jan 15, 2022
Multi-task yolov5 with detection and segmentation based on yolov5

YOLOv5DS Multi-task yolov5 with detection and segmentation based on yolov5(branch v6.0) decoupled head anchor free segmentation head README中文 Ablation

150 Dec 30, 2022
Dense Unsupervised Learning for Video Segmentation (NeurIPS*2021)

Dense Unsupervised Learning for Video Segmentation This repository contains the official implementation of our paper: Dense Unsupervised Learning for

Visual Inference Lab @TU Darmstadt 173 Dec 26, 2022
GANmouflage: 3D Object Nondetection with Texture Fields

GANmouflage: 3D Object Nondetection with Texture Fields Rui Guo1 Jasmine Collins

29 Aug 10, 2022
Resco: A simple python package that report the effect of deep residual learning

resco Description resco is a simple python package that report the effect of dee

Pierre-Arthur Claudé 1 Jun 28, 2022
Semantic Bottleneck Scene Generation

SB-GAN Semantic Bottleneck Scene Generation Coupling the high-fidelity generation capabilities of label-conditional image synthesis methods with the f

Samaneh Azadi 41 Nov 28, 2022
🎃 Core identification module of AI powerful point reading system platform.

ppReader-Kernel Intro Core identification module of AI powerful point reading system platform. Usage 硬件: Windows10、GPU:nvdia GTX 1060 、普通RBG相机 软件: con

CrashKing 1 Jan 11, 2022
A SAT-based sudoku solver

SAT Sudoku solver A SAT-based Sudoku solver made in the context of a small project in the "Logic Problem Solving" class in the first year at the Polyt

Alexandre Malfreyt 5 Apr 15, 2022
Unofficial pytorch implementation of the paper "Dynamic High-Pass Filtering and Multi-Spectral Attention for Image Super-Resolution"

DFSA Unofficial pytorch implementation of the ICCV 2021 paper "Dynamic High-Pass Filtering and Multi-Spectral Attention for Image Super-Resolution" (p

2 Nov 15, 2021
Fast and simple implementation of RL algorithms, designed to run fully on GPU.

RSL RL Fast and simple implementation of RL algorithms, designed to run fully on GPU. This code is an evolution of rl-pytorch provided with NVIDIA's I

Robotic Systems Lab - Legged Robotics at ETH Zürich 68 Dec 29, 2022
Adversarial Self-Defense for Cycle-Consistent GANs

Adversarial Self-Defense for Cycle-Consistent GANs This is the official implementation of the CycleGAN robust to self-adversarial attacks used in pape

Dina Bashkirova 10 Oct 10, 2022
PCGNN - Procedural Content Generation with NEAT and Novelty

PCGNN - Procedural Content Generation with NEAT and Novelty Generation Approach — Metrics — Paper — Poster — Examples PCGNN - Procedural Content Gener

Michael Beukman 8 Dec 10, 2022
The 1st Place Solution of the Facebook AI Image Similarity Challenge (ISC21) : Descriptor Track.

ISC21-Descriptor-Track-1st The 1st Place Solution of the Facebook AI Image Similarity Challenge (ISC21) : Descriptor Track. You can check our solution

lyakaap 73 Dec 24, 2022