SLAMP: Stochastic Latent Appearance and Motion Prediction

Overview

SLAMP: Stochastic Latent Appearance and Motion Prediction

Official implementation of the paper SLAMP: Stochastic Latent Appearance and Motion Prediction (Adil Kaan Akan, Erkut Erdem, Aykut Erdem, Fatma Guney), accepted and presented at ICCV 2021.

Article

Preprint

Project Website

Pretrained Models

Requirements

All models were trained with Python 3.7.6 and PyTorch 1.4.0 using CUDA 10.1.

A list of required Python packages is available in the requirements.txt file.

Datasets

For preparations of datasets, we followed SRVP's code. Please follow the links below if you want to construct the datasets.

Stochastic Moving MNIST

KTH

BAIR

KITTI

For KITTI, you need to download the Raw KITTI dataset and extract the zip files. You can follow the official KITTI page.

A good idea might be preprocessing every image in the dataset so that all of them have a size of (w=310, h=92). Then, you can disable the resizing operation in the data loaders, which will speed up the training.

Cityscapes

For Cityscapes, you need to download leftImg8bit_sequence from the official Cityscapes page.

leftImg8bit_sequence contains 30-frame snippets (17Hz) surrounding each left 8-bit image (-19 | +10) from the train, val, and test sets (150000 images).

A good idea might be preprocessing every image in the dataset so that all of them have a size of (w=256, h=128). Then, you can disable the resizing operation in the data loaders, which will speed up the training.

Training

To train a new model, the script train.py should be used as follows:

Data directory ($DATA_DIR) and $SAVE_DIR must be given using options --data_root $DATA_DIR --log_dir $SAVE_DIR. To use GPU, you need to use --device flag.

  • for Stochastic Moving MNIST:
--n_past 5 --n_future 10 --n_eval 25 --z_dim_app 20 --g_dim_app 128 --z_dim_motion 20
--g_dim_motion 128 --last_frame_skip --running_avg --batch_size 32
  • for KTH:
--dataset kth --n_past 10 --n_future 10 --n_eval 40 --z_dim_app 50 --g_dim_app 128 --z_dim_motion 50 --model vgg
--g_dim_motion 128 --last_frame_skip --running_avg --sch_sampling 25 --batch_size 20
  • for BAIR:
--dataset bair --n_past 2 --n_future 10 --n_eval 30 --z_dim_app 64 --g_dim_app 128 --z_dim_motion 64 --model vgg
--g_dim_motion 128 --last_frame_skip --running_avg --sch_sampling 25 --batch_size 20 --channels 3
  • for KITTI:
--dataset bair --n_past 10 --n_future 10 --n_eval 30 --z_dim_app 32 --g_dim_app 64 --z_dim_motion 32 --batch_size 8
--g_dim_motion 64 --last_frame_skip --running_avg --model vgg --niter 151 --channels 3
  • for Cityscapes:
--dataset bair --n_past 10 --n_future 10 --n_eval 30 --z_dim_app 32 --g_dim_app 64 --z_dim_motion 32 --batch_size 7
--g_dim_motion 64 --last_frame_skip --running_avg --model vgg --niter 151 --channels 3 --epoch_size 1300

Testing

To evaluate a trained model, the script evaluate.py should be used as follows:

python evaluate.py --data_root $DATADIR --log_dir $LOG_DIR --model_path $MODEL_PATH

where $LOG_DIR is a directory where the results will be saved, $DATADIR is the directory containing the test set.

Important note: The directory containing the script should include a directory called lpips_weights which contains v0.1 LPIPS weights (from the official repository of The Unreasonable Effectiveness of Deep Features as a Perceptual Metric).

To run the evaluation on GPU, use the option --device.

Pretrained weight links with Dropbox - For MNIST:
wget https://www.dropbox.com/s/eseisehe2u0epiy/slamp_mnist.pth
  • For KTH:
wget https://www.dropbox.com/s/7m0806nt7xt9bz8/slamp_kth.pth
  • For BAIR:
wget https://www.dropbox.com/s/cl1pzs5trw3ltr0/slamp_bair.pth
  • For KITTI:
wget https://www.dropbox.com/s/p7wdboswakyj7yi/slamp_kitti.pth
  • For Cityscapes:
wget https://www.dropbox.com/s/lzwiivr1irffhsj/slamp_cityscapes.pth

PSNR, SSIM, and LPIPS results reported in the paper were obtained with the following options:

  • for stochastic Moving MNIST:
python evaluate.py --data_root $DATADIR --log_dir $LOG_DIR --model_path $MODEL_PATH --n_past 5 --n_future 20
  • for KTH:
python evaluate.py --data_root $DATADIR --log_dir $LOG_DIR --model_path $MODEL_PATH --n_past 10 --n_future 30
  • for BAIR:
python evaluate.py --data_root $DATADIR --log_dir $LOG_DIR --model_path $MODEL_PATH --n_past 2 --n_future 28
  • for KITTI:
python evaluate.py --data_root $DATADIR --log_dir $LOG_DIR --model_path $MODEL_PATH --n_past 10 --n_future 20
  • for Cityscapes:
python evaluate.py --data_root $DATADIR --log_dir $LOG_DIR --model_path $MODEL_PATH --n_past 10 --n_future 20

To calculate FVD results, you can use calculate_fvd.py script as follows:

python calculate_fvd.py $LOG_DIR $SAMPLE_NAME

where $LOG_DIR is the directory containg the results generated by the evaluate script and $SAMPLE_NAME is the file which contains the samples such as psnr.npz, ssim.npz or lpips.npz. The script will print the FVD value at the end.

How to Cite

Please cite the paper if you benefit from our paper or the repository:

@InProceedings{Akan2021ICCV,
    author    = {Akan, Adil Kaan and Erdem, Erkut and Erdem, Aykut and Guney, Fatma},
    title     = {SLAMP: Stochastic Latent Appearance and Motion Prediction},
    booktitle = {Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)},
    month     = {October},
    year      = {2021},
    pages     = {14728-14737}
}

Acknowledgments

We would like to thank SRVP and SVG authors for making their repositories public. This repository contains several code segments from SRVP's repository and SVG's repository. We appreciate the efforts by Berkay Ugur Senocak for cleaning the code before release.

You might also like...
 Exploring Versatile Prior for Human Motion via Motion Frequency Guidance (3DV2021)
Exploring Versatile Prior for Human Motion via Motion Frequency Guidance (3DV2021)

Exploring Versatile Prior for Human Motion via Motion Frequency Guidance This is the codebase for video-based human motion reconstruction in human-mot

MAU: A Motion-Aware Unit for Video Prediction and Beyond, NeurIPS2021

MAU (NeurIPS2021) Zheng Chang, Xinfeng Zhang, Shanshe Wang, Siwei Ma, Yan Ye, Xinguang Xiang, Wen GAo. Official PyTorch Code for "MAU: A Motion-Aware

Kaggle Lyft Motion Prediction for Autonomous Vehicles 4th place solution

Lyft Motion Prediction for Autonomous Vehicles Code for the 4th place solution of Lyft Motion Prediction for Autonomous Vehicles on Kaggle. Discussion

[arXiv] What-If Motion Prediction for Autonomous Driving ❓🚗💨
[arXiv] What-If Motion Prediction for Autonomous Driving ❓🚗💨

WIMP - What If Motion Predictor Reference PyTorch Implementation for What If Motion Prediction [PDF] [Dynamic Visualizations] Setup Requirements The W

 Waymo motion prediction challenge 2021: 3rd place solution
Waymo motion prediction challenge 2021: 3rd place solution

Waymo motion prediction challenge 2021: 3rd place solution 📜 Technical report 🗨️ Presentation 🎉 Announcement 🛆Motion Prediction Channel Website 🛆

Multi-Person Extreme Motion Prediction

Multi-Person Extreme Motion Prediction Implementation for paper Wen Guo, Xiaoyu Bie, Xavier Alameda-Pineda, Francesc Moreno-Noguer, Multi-Person Extre

Sound and Cost-effective Fuzzing of Stripped Binaries by Incremental and Stochastic Rewriting
Sound and Cost-effective Fuzzing of Stripped Binaries by Incremental and Stochastic Rewriting

StochFuzz: A New Solution for Binary-only Fuzzing StochFuzz is a (probabilistically) sound and cost-effective fuzzing technique for stripped binaries.

Price-Prediction-For-a-Dream-Home - A machine learning based linear regression trained model for house price prediction.
Price-Prediction-For-a-Dream-Home - A machine learning based linear regression trained model for house price prediction.

Price-Prediction-For-a-Dream-Home ROADMAP TO THIS LINEAR REGRESSION BASED HOUSE PRICE PREDICTION PREDICTION MODEL Import all the dependencies of the p

Doge-Prediction - Coding Club prediction ig

Doge-Prediction Coding Club prediction ig Basically: Create an application that

Comments
  • Details on KTH and BAIR Validation Sets

    Details on KTH and BAIR Validation Sets

    Hi! Thanks for providing the implementation of SLAMP. In the data processing scripts (data/kth.py and data/bair.py), how do you generate kth_valset_40.npz and bair_valset_30.npz? Is it following the SRVP's code for generating test sets? Could you please provide some details on those sets? Thank you!

    opened by hanghang177 4
  • nsample missing arguments

    nsample missing arguments

    Hi during running your code, i was unexpectedly see an error due to missing arguments

    File "/notebooks/slamp/helpers.py", line 362, in eval_step nsample = opt.nsample

    File args.py doesnt have any definition about nsample, what does nsample mean? I suppose it should be the number of samples per batch in evaluation which means eval batch size Thanks for your reading

    opened by eric-le-12 1
Releases(v1.0)
Code for "Localization with Sampling-Argmax", NeurIPS 2021

Localization with Sampling-Argmax [Paper] [arXiv] [Project Page] Localization with Sampling-Argmax Jiefeng Li, Tong Chen, Ruiqi Shi, Yujing Lou, Yong-

JeffLi 71 Dec 17, 2022
[CVPR 2022] Thin-Plate Spline Motion Model for Image Animation.

[CVPR2022] Thin-Plate Spline Motion Model for Image Animation Source code of the CVPR'2022 paper "Thin-Plate Spline Motion Model for Image Animation"

yoyo-nb 1.4k Dec 30, 2022
An example to implement a new backbone with OpenMMLab framework.

Backbone example on OpenMMLab framework English | 简体中文 Introduction This is an template repo about how to use OpenMMLab framework to develop a new bac

Ma Zerun 22 Dec 29, 2022
A new benchmark for Icon Question Answering (IconQA) and a large-scale icon dataset Icon645.

IconQA About IconQA is a new diverse abstract visual question answering dataset that highlights the importance of abstract diagram understanding and c

Pan Lu 24 Dec 30, 2022
Pose Detection and Machine Learning for real-time body posture analysis during exercise to provide audiovisual feedback on improvement of form.

Posture: Pose Tracking and Machine Learning for prescribing corrective suggestions to improve posture and form while exercising. This repository conta

Pratham Mehta 10 Nov 11, 2022
The aim of this project is to build an AI bot that can play the Wordle game, or more generally Squabble

Wordle RL The aim of this project is to build an AI bot that can play the Wordle game, or more generally Squabble I know there are more deterministic

Aditya Arora 3 Feb 22, 2022
A Python 3 package for state-of-the-art statistical dimension reduction methods

direpack: a Python 3 library for state-of-the-art statistical dimension reduction techniques This package delivers a scikit-learn compatible Python 3

Sven Serneels 32 Dec 14, 2022
PyTorch Live is an easy to use library of tools for creating on-device ML demos on Android and iOS.

PyTorch Live is an easy to use library of tools for creating on-device ML demos on Android and iOS. With Live, you can build a working mobile app ML demo in minutes.

559 Jan 01, 2023
Mesh TensorFlow: Model Parallelism Made Easier

Mesh TensorFlow - Model Parallelism Made Easier Introduction Mesh TensorFlow (mtf) is a language for distributed deep learning, capable of specifying

1.3k Dec 26, 2022
[CVPR 2021] Released code for Counterfactual Zero-Shot and Open-Set Visual Recognition

Counterfactual Zero-Shot and Open-Set Visual Recognition This project provides implementations for our CVPR 2021 paper Counterfactual Zero-S

144 Dec 24, 2022
An original implementation of "Noisy Channel Language Model Prompting for Few-Shot Text Classification"

Channel LM Prompting (and beyond) This includes an original implementation of Sewon Min, Mike Lewis, Hannaneh Hajishirzi, Luke Zettlemoyer. "Noisy Cha

Sewon Min 92 Jan 07, 2023
Object Detection with YOLOv3

Object Detection with YOLOv3 Bu projede YOLOv3-608 modeli kullanılmıştır. Requirements Python 3.8 OpenCV Numpy Documentation Yolo ile ilgili detaylı b

Ayşe Konuş 0 Mar 27, 2022
Unified learning approach for egocentric hand gesture recognition and fingertip detection

Unified Gesture Recognition and Fingertip Detection A unified convolutional neural network (CNN) algorithm for both hand gesture recognition and finge

Mohammad 227 Dec 25, 2022
Introducing neural networks to predict stock prices

IntroNeuralNetworks in Python: A Template Project IntroNeuralNetworks is a project that introduces neural networks and illustrates an example of how o

Vivek Palaniappan 637 Jan 04, 2023
T2F: text to face generation using Deep Learning

⭐ [NEW] ⭐ T2F - 2.0 Teaser (coming soon ...) Please note that all the faces in the above samples are generated ones. The T2F 2.0 will be using MSG-GAN

Animesh Karnewar 533 Dec 22, 2022
EASY - Ensemble Augmented-Shot Y-shaped Learning: State-Of-The-Art Few-Shot Classification with Simple Ingredients.

EASY - Ensemble Augmented-Shot Y-shaped Learning: State-Of-The-Art Few-Shot Classification with Simple Ingredients. This repository is the official im

Yassir BENDOU 57 Dec 26, 2022
A fast, scalable, high performance Gradient Boosting on Decision Trees library, used for ranking, classification, regression and other machine learning tasks for Python, R, Java, C++. Supports computation on CPU and GPU.

Website | Documentation | Tutorials | Installation | Release Notes CatBoost is a machine learning method based on gradient boosting over decision tree

CatBoost 6.9k Jan 04, 2023
Crossover Learning for Fast Online Video Instance Segmentation (ICCV 2021)

TL;DR: CrossVIS (Crossover Learning for Fast Online Video Instance Segmentation) proposes a novel crossover learning paradigm to fully leverage rich c

Hust Visual Learning Team 79 Nov 25, 2022
Training deep models using anime, illustration images.

animeface deep models for anime images. Datasets anime-face-dataset Anime faces collected from Getchu.com. Based on Mckinsey666's dataset. 63.6K image

Tomoya Sawada 61 Dec 25, 2022