Wider-Yolo Kütüphanesi ile Yüz Tespit Uygulamanı Yap

Overview

WIDER-YOLO : Yüz Tespit Uygulaması Yap

Wider-Yolo Kütüphanesinin Kullanımı

1. Wider Face Veri Setini İndir

Not: İndirilen veri setini ismini değiştirmeden wider_data klasörün içine atın.

2. Dosyaları Düzeni:

datasets/ 
      wider_face_split/  
          - wider_face_train_bbx_gt.txt
          - wider_face_val_bbx_gt.txt
         
      WIDER_train/
         - images

      WIDER_train_annotations 

      WIDER_val
         - images

      WIDER_val_annotations

Not: WIDER_train_annotations ve WIDER_val_annotations klasörleri oluşturmanıza gerek yoktur.

3. Wider Veri Setini Voc Xml Formatına Çevir

python ./wider_to_xml.py -ap ./wider_data/wider_face_split/wider_face_train_bbx_gt.txt -tp ./wider_data/WIDER_train_annotations/ -ip ./wider_data/WIDER_train/images/
python ./wider_to_xml.py -ap ./wider_data/wider_face_split/wider_face_val_bbx_gt.txt -tp ./wider_data/WIDER_val_annotations/ -ip ./wider_data/WIDER_val/images/

4. Voc Xml Veri Setini Yolo Formatına Çevir

python ./xml_to_yolo --path ./wider_data/WIDER_train_annotations/
python ./xml_to_yolo --path ./wider_data/WIDER_val_annotations/

5. Yolo Modelini Eğit

!yolov5 train --data data.yaml --weights 'yolov5n.pt' --batch-size 16 --epochs 100 --imgs 512

6. Yolo Modelini Test Et

Tek resim test etmek için:

!yolov5 detect --weights wider-yolo.pth --source  file.jpg  

Tüm resim dosyasını test etmek için

!yolov5 detect --weights wider-yolo.pth --source  path/*.jpg 

Not: Yeterli Gpu kaynağına sahip olamadığım için wider seti için düşük parametre değerleri verdim. Parametre Değerleri:

batch-size: 256, epochs: 5, imgs 320

6. Yolov5 + Sahi Algoritmasını Test Et

from sahi.model import Yolov5DetectionModel
from sahi.utils.cv import read_image
from sahi.predict import get_prediction, get_sliced_prediction, predict
from IPython.display import Image

detection_model = Yolov5DetectionModel(
   model_path="last.pt",
   confidence_threshold=0.3,
   device="cpu",
)

result = get_sliced_prediction(
    "test_data/2.jpg",
    detection_model,
    slice_height = 256,
    slice_width = 256,
    overlap_height_ratio = 0.8,
    overlap_width_ratio = 0.8
)
result.export_visuals(export_dir="demo_data/")
Image("demo_data/prediction_visual.png")

Sahi Algoritması ile ilgili Örnek Proje:

Referanslar:

You might also like...
A state of the art of new lightweight YOLO model implemented by TensorFlow 2.
A state of the art of new lightweight YOLO model implemented by TensorFlow 2.

CSL-YOLO: A New Lightweight Object Detection System for Edge Computing This project provides a SOTA level lightweight YOLO called "Cross-Stage Lightwe

Based on Yolo's low-power, ultra-lightweight universal target detection algorithm, the parameter is only 250k, and the speed of the smart phone mobile terminal can reach ~300fps+
Based on Yolo's low-power, ultra-lightweight universal target detection algorithm, the parameter is only 250k, and the speed of the smart phone mobile terminal can reach ~300fps+

Based on Yolo's low-power, ultra-lightweight universal target detection algorithm, the parameter is only 250k, and the speed of the smart phone mobile terminal can reach ~300fps+

a Pytorch easy re-implement of "YOLOX: Exceeding YOLO Series in 2021"

A pytorch easy re-implement of "YOLOX: Exceeding YOLO Series in 2021" 1. Notes This is a pytorch easy re-implement of "YOLOX: Exceeding YOLO Series in

load .txt to train YOLOX, same as Yolo others

YOLOX train your data you need generate data.txt like follow format (per line- one image). prepare one data.txt like this: img_path1 x1,y1,x2,y2,clas

Vehicle Detection Using Deep Learning and YOLO Algorithm
Vehicle Detection Using Deep Learning and YOLO Algorithm

VehicleDetection Vehicle Detection Using Deep Learning and YOLO Algorithm Dataset take or find vehicle images for create a special dataset for fine-tu

This project deploys a yolo fastest model in the form of tflite on raspberry 3b+. The model is from another repository of mine called -Trash-Classification-Car
This project deploys a yolo fastest model in the form of tflite on raspberry 3b+. The model is from another repository of mine called -Trash-Classification-Car

Deploy-yolo-fastest-tflite-on-raspberry 觉得有用的话可以顺手点个star嗷 这个项目将垃圾分类小车中的tflite模型移植到了树莓派3b+上面。 该项目主要是为了记录在树莓派部署yolo fastest tflite的流程 (之后有时间会尝试用C++部署来提升

Implementation for the paper 'YOLO-ReT: Towards High Accuracy Real-time Object Detection on Edge GPUs'

YOLO-ReT This is the original implementation of the paper: YOLO-ReT: Towards High Accuracy Real-time Object Detection on Edge GPUs. Prakhar Ganesh, Ya

A library for augmentation of a YOLO-formated dataset

YOLO Dataset Augmentation lib Инструкция по использованию этой библиотеки Запуск всех файлов осуществлять из консоли. GoogleCrawl_to_Dataset.py Это ск

Yolo Traffic Light Detection With Python

Yolo-Traffic-Light-Detection This project is based on detecting the Traffic light. Pretained data is used. This application entertained both real time

Comments
  • dataset github release uzerinden indirebilir

    dataset github release uzerinden indirebilir

    @kadirnar oncelikle proje cok basarili, eline saglik 💯

    github repolarinda yeni release olustururken, dosya basina max 2gb limit ile dosya yuklemene izin veriyor. senin widerface train/val/test splitleri bu limitin altinda kaliyor. github release uzerinden host ederek google drive'in indirme limitinden kurtulabilirsin 👍

    enhancement good first issue 
    opened by fcakyon 9
  • reponun secretslarina PYPI_API_TOKEN eklemek gerekiyor

    reponun secretslarina PYPI_API_TOKEN eklemek gerekiyor

    Merhaba @kadirnar, tag sorunu cozulmus, simdi su hatayi veriyor action:

    Warning:  It looks like you are trying to use an API token to authenticate in the package index and your token value does not start with "pypi-" as it typically should. This may cause an authentication error. Please verify that you have copied your token properly if such an error occurs.
    

    Bu warning yanlis tokeni kopyalamis olabilecegini gosteriyor.

    Error during upload. Retry with the --verbose option for more details.
    HTTPError: 403 Forbidden from https://upload.pypi.org/legacy/
    Invalid or non-existent authentication information. See https://pypi.org/help/#invalid-auth for more information.
    

    Bu hata gecerli bir api token verilmedigini gosteriyor.

    https://pypi.org/ uzerinden API_TOKEN uretip bu reponun secretlarina PYPI_API_TOKEN adiyla dogru sekilde ekledin mi?

    bug 
    opened by fcakyon 3
  • yeni bir tag ile release almak gerekiyor

    yeni bir tag ile release almak gerekiyor

    @kadirnar tag 0.0.1 hatali oldugu oldugu icin bu tag ile pypi publish hata veriyor: https://github.com/kadirnar/wideryolo/actions/runs/1604116696

    yeni bir tag ile (0.0.5) release alarak pypi'den hatasiz pypi publish alabilirsin.

    enhancement 
    opened by fcakyon 0
Owner
Kadir Nar
Kadir Nar
Benchmarks for Model-Based Optimization

Design-Bench Design-Bench is a benchmarking framework for solving automatic design problems that involve choosing an input that maximizes a black-box

Brandon Trabucco 43 Dec 20, 2022
Repository for the paper "Online Domain Adaptation for Occupancy Mapping", RSS 2020

RSS 2020 - Online Domain Adaptation for Occupancy Mapping Repository for the paper "Online Domain Adaptation for Occupancy Mapping", Robotics: Science

Anthony 26 Sep 22, 2022
Adversarial Learning for Semi-supervised Semantic Segmentation, BMVC 2018

Adversarial Learning for Semi-supervised Semantic Segmentation This repo is the pytorch implementation of the following paper: Adversarial Learning fo

Wayne Hung 464 Dec 19, 2022
Supplementary code for the experiments described in the 2021 ISMIR submission: Leveraging Hierarchical Structures for Few Shot Musical Instrument Recognition.

Music Trees Supplementary code for the experiments described in the 2021 ISMIR submission: Leveraging Hierarchical Structures for Few Shot Musical Ins

Hugo Flores García 32 Nov 22, 2022
Toolbox to analyze temporal context invariance of deep neural networks

PyTCI A toolbox that estimates the integration window of a sensory response using the "Temporal Context Invariance" paradigm (TCI). The TCI method Int

4 Oct 23, 2022
Robust and Accurate Object Detection via Self-Knowledge Distillation

Robust and Accurate Object Detection via Self-Knowledge Distillation paper:https://arxiv.org/abs/2111.07239 Environments Python 3.7 Cuda 10.1 Prepare

Weipeng Xu 6 Jul 01, 2022
Multi-query Video Retreival

Multi-query Video Retreival

Princeton Visual AI Lab 17 Nov 22, 2022
Deeprl - Standard DQN and dueling network for simple games

DeepRL This code implements the standard deep Q-learning and dueling network with experience replay (memory buffer) for playing simple games. DQN algo

Yao Zhou 6 Apr 12, 2020
Code repository for EMNLP 2021 paper 'Adversarial Attacks on Knowledge Graph Embeddings via Instance Attribution Methods'

Adversarial Attacks on Knowledge Graph Embeddings via Instance Attribution Methods This is the code repository to accompany the EMNLP 2021 paper on ad

Peru Bhardwaj 7 Sep 25, 2022
A python library for face detection and features extraction based on mediapipe library

FaceAnalyzer A python library for face detection and features extraction based on mediapipe library Introduction FaceAnalyzer is a library based on me

Saifeddine ALOUI 14 Dec 30, 2022
Semantic Segmentation for Real Point Cloud Scenes via Bilateral Augmentation and Adaptive Fusion (CVPR 2021)

Semantic Segmentation for Real Point Cloud Scenes via Bilateral Augmentation and Adaptive Fusion (CVPR 2021) This repository is for BAAF-Net introduce

90 Dec 29, 2022
NIMA: Neural IMage Assessment

PyTorch NIMA: Neural IMage Assessment PyTorch implementation of Neural IMage Assessment by Hossein Talebi and Peyman Milanfar. You can learn more from

Kyryl Truskovskyi 293 Dec 30, 2022
A PyTorch Implementation of Gated Graph Sequence Neural Networks (GGNN)

A PyTorch Implementation of GGNN This is a PyTorch implementation of the Gated Graph Sequence Neural Networks (GGNN) as described in the paper Gated G

Ching-Yao Chuang 427 Dec 13, 2022
StyleGAN-NADA: CLIP-Guided Domain Adaptation of Image Generators

StyleGAN-NADA: CLIP-Guided Domain Adaptation of Image Generators [Project Website] [Replicate.ai Project] StyleGAN-NADA: CLIP-Guided Domain Adaptation

992 Dec 30, 2022
Optimal space decomposition based-product quantization for approximate nearest neighbor search

Optimal space decomposition based-product quantization for approximate nearest neighbor search Abstract Product quantization(PQ) is an effective neare

Mylove 1 Nov 19, 2021
UnivNet: A Neural Vocoder with Multi-Resolution Spectrogram Discriminators for High-Fidelity Waveform Generation

UnivNet UnivNet: A Neural Vocoder with Multi-Resolution Spectrogram Discriminators for High-Fidelity Waveform Generation. Training python train.py --c

Rishikesh (ऋषिकेश) 55 Dec 26, 2022
Accelerated deep learning R&D

Accelerated deep learning R&D PyTorch framework for Deep Learning research and development. It focuses on reproducibility, rapid experimentation, and

Catalyst-Team 3.1k Jan 06, 2023
Pytorch implementation of Straight Sampling Network For Point Cloud Learning (ICIP2021).

Pytorch code for SS-Net This is a pytorch implementation of Straight Sampling Network For Point Cloud Learning (ICIP2021). Environment Code is tested

Sun Ran 1 May 18, 2022
Get the partition that a file belongs and the percentage of space that consumes

tinos_eisai_sy Get the partition that a file belongs and the percentage of space that consumes (works only with OSes that use the df command) tinos_ei

Konstantinos Patronas 6 Jan 24, 2022
A repository that finds a person who looks like you by using face recognition technology.

Find Your Twin Hello everyone, I've always wondered how casting agencies do the casting for a scene where a certain actor is young or old for a movie

Cengizhan Yurdakul 3 Jan 29, 2022