Official Pytorch implementation of "Learning Debiased Representation via Disentangled Feature Augmentation (Neurips 2021, Oral)"

Overview

Learning Debiased Representation via Disentangled Feature Augmentation (Neurips 2021, Oral): Official Project Webpage

This repository provides the official PyTorch implementation of the following paper:

Learning Debiased Representation via Disentangled Feature Augmentation
Jungsoo Lee* (KAIST AI, Kakao Enterprise), Eungyeup Kim* (KAIST AI, Kakao Enterprise),
Juyoung Lee (Kakao Enterprise), Jihyeon Lee (KAIST AI), and Jaegul Choo (KAIST AI)
(* indicates equal contribution. The order of first authors was chosen by tossing a coin.)
NeurIPS 2021, Oral

Paper: Arxiv

Abstract: Image classification models tend to make decisions based on peripheral attributes of data items that have strong correlation with a target variable (i.e., dataset bias). These biased models suffer from the poor generalization capability when evaluated on unbiased datasets. Existing approaches for debiasing often identify and emphasize those samples with no such correlation (i.e., bias-conflicting) without defining the bias type in advance. However, such bias-conflicting samples are significantly scarce in biased datasets, limiting the debiasing capability of these approaches. This paper first presents an empirical analysis revealing that training with "diverse" bias-conflicting samples beyond a given training set is crucial for debiasing as well as the generalization capability. Based on this observation, we propose a novel feature-level data augmentation technique in order to synthesize diverse bias-conflicting samples. To this end, our method learns the disentangled representation of (1) the intrinsic attributes (i.e., those inherently defining a certain class) and (2) bias attributes (i.e., peripheral attributes causing the bias), from a large number of bias-aligned samples, the bias attributes of which have strong correlation with the target variable. Using the disentangled representation, we synthesize bias-conflicting samples that contain the diverse intrinsic attributes of bias-aligned samples by swapping their latent features. By utilizing these diversified bias-conflicting features during the training, our approach achieves superior classification accuracy and debiasing results against the existing baselines on both synthetic as well as a real-world dataset.

Code Contributors

Jungsoo Lee [Website] [LinkedIn] [Google Scholar] (KAIST AI, Kakao Enterprise)
Eungyeup Kim [Website] [LinkedIn] [Google Scholar] (KAIST AI, Kakao Enterprise)
Juyoung Lee [Website] (Kakao Enterprise)

Pytorch Implementation

Installation

Clone this repository.

git clone https://github.com/kakaoenterprise/Learning-Debiased-Disentangled.git
cd Learning-Debiased-Disentangled
pip install -r requirements.txt

Datasets

We used three datasets in our paper.

Download the datasets with the following url. Note that BFFHQ is the dataset used in "BiaSwap: Removing Dataset Bias with Bias-Tailored Swapping Augmentation" (Kim et al., ICCV 2021). Unzip the files and the directory structures will be as following:

cmnist
 └ 0.5pct / 1pct / 2pct / 5pct
     └ align
     └ conlict
     └ valid
 └ test
cifar10c
 └ 0.5pct / 1pct / 2pct / 5pct
     └ align
     └ conlict
     └ valid
 └ test
bffhq
 └ 0.5pct
 └ valid
 └ test

How to Run

CMNIST

Vanilla
python train.py --dataset cmnist --exp=cmnist_0.5_vanilla --lr=0.01 --percent=0.5pct --train_vanilla --tensorboard --wandb
python train.py --dataset cmnist --exp=cmnist_1_vanilla --lr=0.01 --percent=1pct --train_vanilla --tensorboard --wandb
python train.py --dataset cmnist --exp=cmnist_2_vanilla --lr=0.01 --percent=2pct --train_vanilla --tensorboard --wandb
python train.py --dataset cmnist --exp=cmnist_5_vanilla --lr=0.01 --percent=5pct --train_vanilla --tensorboard --wandb
bash scripts/run_cmnist_vanilla.sh
Ours
python train.py --dataset cmnist --exp=cmnist_0.5_ours --lr=0.01 --percent=0.5pct --curr_step=10000 --lambda_swap=1 --lambda_dis_align=10 --lambda_swap_align=10 --use_lr_decay --lr_decay_step=10000 --lr_gamma=0.5 --train_ours --tensorboard --wandb
python train.py --dataset cmnist --exp=cmnist_1_ours --lr=0.01 --percent=1pct  --curr_step=10000 --lambda_swap=1 --lambda_dis_align=10 --lambda_swap_align=10 --use_lr_decay --lr_decay_step=10000 --lr_gamma=0.5 --train_ours --tensorboard --wandb
python train.py --dataset cmnist --exp=cmnist_2_ours --lr=0.01 --percent=2pct  --curr_step=10000 --lambda_swap=1 --lambda_dis_align=10 --lambda_swap_align=10 --use_lr_decay --lr_decay_step=10000 --lr_gamma=0.5 --train_ours --tensorboard --wandb
python train.py --dataset cmnist --exp=cmnist_5_ours --lr=0.01 --percent=5pct  --curr_step=10000 --lambda_swap=1 --lambda_dis_align=10 --lambda_swap_align=10 --use_lr_decay --lr_decay_step=10000 --lr_gamma=0.5 --train_ours --tensorboard --wandb
bash scripts/run_cmnist_ours.sh

Corrupted CIFAR10

Vanilla
python train.py --dataset cifar10c --exp=cifar10c_0.5_vanilla --lr=0.001 --percent=0.5pct --train_vanilla --tensorboard --wandb
python train.py --dataset cifar10c --exp=cifar10c_1_vanilla --lr=0.001 --percent=1pct --train_vanilla --tensorboard --wandb
python train.py --dataset cifar10c --exp=cifar10c_2_vanilla --lr=0.001 --percent=2pct --train_vanilla --tensorboard --wandb
python train.py --dataset cifar10c --exp=cifar10c_5_vanilla --lr=0.001 --percent=5pct --train_vanilla --tensorboard --wandb
bash scripts/run_cifar10c_vanilla.sh
Ours
python train.py --dataset cifar10c --exp=cifar10c_0.5_ours --lr=0.0005 --percent=0.5pct --curr_step=10000 --lambda_swap=1 --lambda_dis_align=1 --lambda_swap_align=1 --use_lr_decay --lr_decay_step=10000 --lr_gamma=0.5 --train_ours --tensorboard --wandb
python train.py --dataset cifar10c --exp=cifar10c_1_ours --lr=0.001 --percent=1pct --curr_step=10000 --lambda_swap=1 --lambda_dis_align=5 --lambda_swap_align=5 --use_lr_decay --lr_decay_step=10000 --lr_gamma=0.5 --train_ours --tensorboard --wandb
python train.py --dataset cifar10c --exp=cifar10c_2_ours --lr=0.001 --percent=2pct --curr_step=10000 --lambda_swap=1 --lambda_dis_align=5 --lambda_swap_align=5 --use_lr_decay --lr_decay_step=10000 --lr_gamma=0.5 --train_ours --tensorboard --wandb
python train.py --dataset cifar10c --exp=cifar10c_5_ours --lr=0.001 --percent=5pct --curr_step=10000 --lambda_swap=1 --lambda_dis_align=1 --lambda_swap_align=1 --use_lr_decay --lr_decay_step=10000 --lr_gamma=0.5 --train_ours --tensorboard --wandb
bash scripts/run_cifar10c_ours.sh

BFFHQ

Vanilla
python train.py --dataset bffhq --exp=bffhq_0.5_vanilla --lr=0.0001 --percent=0.5pct --train_vanilla --tensorboard --wandb
bash scripts/run_bffhq_vanilla.sh
Ours
python train.py --dataset bffhq --exp=bffhq_0.5_ours --lr=0.0001 --percent=0.5pct --lambda_swap=0.1 --curr_step=10000 --use_lr_decay --lr_decay_step=10000 --lambda_dis_align 2. --lambda_swap_align 2. --dataset bffhq --train_ours --tensorboard --wandb
bash scripts/run_bffhq_ours.sh

Pretrained Models

In order to test our pretrained models, run the following command.

python test.py --pretrained_path=
   
     --dataset=
    
      --percent=
     

     
    
   

We provide the pretrained models in the following urls.
CMNIST 0.5pct
CMNIST 1pct
CMNIST 2pct
CMNIST 5pct

CIFAR10C 0.5pct
CIFAR10C 1pct
CIFAR10C 2pct
CIFAR10C 5pct

BFFHQ 0.5pct

Citations

Bibtex coming soon!

Contact

Jungsoo Lee

Eungyeup Kim

Juyoung Lee

Kakao Enterprise/Vision Team

Acknowledgments

This work was mainly done when both of the first authors were doing internship at Vision Team/AI Lab/Kakao Enterprise. Our pytorch implementation is based on LfF. Thanks for the implementation.

Owner
Kakao Enterprise Corp.
Kakao Enterprise Corp.
Implementation and replication of ProGen, Language Modeling for Protein Generation, in Jax

ProGen - (wip) Implementation and replication of ProGen, Language Modeling for Protein Generation, in Pytorch and Jax (the weights will be made easily

Phil Wang 71 Dec 01, 2022
This is a computer vision based implementation of the popular childhood game 'Hand Cricket/Odd or Even' in python

Hand Cricket Table of Content Overview Installation Game rules Project Details Future scope Overview This is a computer vision based implementation of

Abhinav R Nayak 6 Jan 12, 2022
Finite-temperature variational Monte Carlo calculation of uniform electron gas using neural canonical transformation.

CoulombGas This code implements the neural canonical transformation approach to the thermodynamic properties of uniform electron gas. Building on JAX,

FermiFlow 9 Mar 03, 2022
THIS IS THE **OLD** PYMC PROJECT. PLEASE USE PYMC3 INSTEAD:

Introduction Version: 2.3.8 Authors: Chris Fonnesbeck Anand Patil David Huard John Salvatier Web site: https://github.com/pymc-devs/pymc Documentation

PyMC 7.2k Jan 07, 2023
HHP-Net: A light Heteroscedastic neural network for Head Pose estimation with uncertainty

HHP-Net: A light Heteroscedastic neural network for Head Pose estimation with uncertainty Giorgio Cantarini, Francesca Odone, Nicoletta Noceti, Federi

18 Aug 02, 2022
Dark Finix: All in one hacking framework with almost 100 tools

Dark Finix - Hacking Framework. Dark Finix is a all in one hacking framework wit

Md. Nur habib 2 Feb 18, 2022
LAnguage Model Analysis

LAMA: LAnguage Model Analysis LAMA is a probe for analyzing the factual and commonsense knowledge contained in pretrained language models. The dataset

Meta Research 960 Jan 08, 2023
Official Code for "Non-deep Networks"

Non-deep Networks arXiv:2110.07641 Ankit Goyal, Alexey Bochkovskiy, Jia Deng, Vladlen Koltun Overview: Depth is the hallmark of DNNs. But more depth m

Ankit Goyal 567 Dec 12, 2022
Repo for "Event-Stream Representation for Human Gaits Identification Using Deep Neural Networks"

Summary This is the code for the paper Event-Stream Representation for Human Gaits Identification Using Deep Neural Networks by Yanxiang Wang, Xian Zh

zhangxian 54 Jan 03, 2023
Molecular AutoEncoder in PyTorch

MolEncoder Molecular AutoEncoder in PyTorch Install $ git clone https://github.com/cxhernandez/molencoder.git && cd molencoder $ python setup.py insta

Carlos Hernández 80 Dec 05, 2022
magiCARP: Contrastive Authoring+Reviewing Pretraining

magiCARP: Contrastive Authoring+Reviewing Pretraining Welcome to the magiCARP API, the test bed used by EleutherAI for performing text/text bi-encoder

EleutherAI 43 Dec 29, 2022
A script that trains a model to recognize handwritten digits using the MNIST data set.

handwritten-digits-recognition A script that trains a model to recognize handwritten digits using the MNIST data set. Then it loads external files and

Hamza Sayih 1 Oct 30, 2021
Code for the Paper: Alexandra Lindt and Emiel Hoogeboom.

Discrete Denoising Flows This repository contains the code for the experiments presented in the paper Discrete Denoising Flows [1]. To give a short ov

Alexandra Lindt 3 Oct 09, 2022
Official code for "InfoGraph: Unsupervised and Semi-supervised Graph-Level Representation Learning via Mutual Information Maximization" (ICLR 2020, spotlight)

InfoGraph: Unsupervised and Semi-supervised Graph-Level Representation Learning via Mutual Information Maximization Authors: Fan-yun Sun, Jordan Hoffm

Fan-Yun Sun 232 Dec 28, 2022
A simple, fast, and efficient object detector without FPN

You Only Look One-level Feature (YOLOF), CVPR2021 A simple, fast, and efficient object detector without FPN. This repo provides an implementation for

789 Jan 09, 2023
Official PyTorch implementation of "VITON-HD: High-Resolution Virtual Try-On via Misalignment-Aware Normalization" (CVPR 2021)

VITON-HD — Official PyTorch Implementation VITON-HD: High-Resolution Virtual Try-On via Misalignment-Aware Normalization Seunghwan Choi*1, Sunghyun Pa

Seunghwan Choi 250 Jan 06, 2023
Mahadi-Now - This Is Pakistani Just Now Login Tools

PAKISTANI JUST NOW LOGIN TOOLS Install apt update apt upgrade apt install python

MAHADI HASAN AFRIDI 19 Apr 06, 2022
MANO hand model porting for the GraspIt simulator

Learning Joint Reconstruction of Hands and Manipulated Objects - ManoGrasp Porting the MANO hand model to GraspIt! simulator Yana Hasson, Gül Varol, D

Lucas Wohlhart 10 Feb 08, 2022
Mmrotate - OpenMMLab Rotated Object Detection Benchmark

OpenMMLab website HOT OpenMMLab platform TRY IT OUT 📘 Documentation | 🛠️ Insta

OpenMMLab 1.2k Jan 04, 2023
Distance correlation and related E-statistics in Python

dcor dcor: distance correlation and related E-statistics in Python. E-statistics are functions of distances between statistical observations in metric

Carlos Ramos Carreño 108 Dec 27, 2022