ClevrTex: A Texture-Rich Benchmark for Unsupervised Multi-Object Segmentation

Overview

ClevrTex

This repository contains dataset generation code for ClevrTex benchmark from paper: ClevrTex: A Texture-Rich Benchmark for Unsupervised Multi-Object Segmentation

Requirements

The follwing preparation steps are required to generate the dataset.

  1. Setting up blender
  2. Setting up python
  3. Setting up textures and materials

Blender

We used blender 2.92.3 for rendering. Newer versions are untested but should work at least up to a minor bump. One might download it from Blender website and follow installation instructions process as normal then skip to the final step. Or simply execute this (will set up blender in /usr/local/blender):

mkdir /usr/local/blender && \
curl -SL "http://mirror.cs.umn.edu/blender.org/release/Blender2.92/blender-2.92.0-linux64.tar.xz" -o blender.tar.xz && \
tar -xvf blender.tar.xz -C /usr/local/blender --strip-components=1 && \
rm blender.tar.xz && ln -s /usr/local/blender/blender /usr/local/bin/blender

Since we use "system interpreter" (see intructions bellow to set up a compatible one) for Blender headless mode, remove python that comes pre-packaged.

rm -rf /usr/local/blender/2.92/python

Python

One needs to set up python with required libraries and with correct version. Blender uses python 3.7 (older or newer version will not work). For simplicty, use conda:

conda env create -f env.yaml

When invoking Blender use (assumes the appropriate env was named p37) :

PYTHONPATH=~/miniconda3/envs/p37/bin/python \
PYTHONHOME=~/miniconda3/envs/p37 \
blender --background --python-use-system-env --python generate.py -- <args>

Textures

The final piece is to set up source assets for rendering, namely the materials. Briefly, the textures used to create the materials are copyrighted by Poliigon Pty Ltd. Textures used in the ClevrTex dataset are freely availble (at the time of writing) and should be downloaded from www.poliigon.com (download metalness workflow for matalics). Please check MATERIALS.md for full list.

Download appropriate textures and place them into data/materials/textures and data/outd_materials/textures. Note, the textures should be in the directory not in subfolders. We include .blend files for materials which have been stripped of the original textures (due to licensing restrictions) but contain the settings adjustments made. Skip the following instructions if working with existing .blend files.

To add new materials:

The following process needs to be applied for each new material. Consider using addon provided by Poliigon.

  1. Import materials textures as per addon's instructions.
  2. Open the material in question in node editor in Blender.
  3. Create a new node group of all nodes except the output node (yes this will nest the groups, it is intentional). We rely on the trick identified by Johnson et al. in the original CLEVR script where Blender seems to copy-by-value node trees, which makes it trivial to create duplicate materials in the scene.
  4. Connect any inputs of interest to the group inputs. Crucially, check that Scale and Displacement Strength are available as inputs. The sampling script will pass these in to ensure that background/objects have correct scale adjustements to ensure level of details does not disappear between small objects and large background. Check that outputs have been connected to Shader output nodes (should have happended automatically).
  5. Ensure that the materials look good with other parameters. Consider including additional logic nodes to e.g. scaling, and displacement parameters. Materials have Random \in [0, 1] number passed to them as input (if available), if one needs to randomise aspects of the material.
    • (Optional) Render the materials to see how they would look in the output. Repeat until desired look is acheived.
  6. Ensure the node group is named identically to the material and then save it as your-node-group-name.blend.

This is unfortunatelly a manual process to ensure all textures look good that usually involves several test render per texture.

Debugging textures

To ensure the textures are found and look good, consider trying with a single texture first (to save time). To scan for errors and see how the end result might look like, consider using --test_scan option in the generation script.* In addition, consider --blendfiles option to save blender scene after rendering for manual inspection.

Generating

To generate the dataset run the following (will produce a LOCAL_debug_000001.png example):

cd clevrtex-gen
 ./local_test.bash

Otherwise, please see arguments available to customise the rendering. Dataset variants can be recreated using appropriate .json files.

Using ClevrTex

See project page for download links for CLEVRTEX. clevrtex_eval.py file contains dataloading logic to for convenient access to CLEVRTEX data. Consider

from clevrtex_eval import CLEVRTEX, collate_fn

clevrtex = CLEVRTEX(
    'path-to-downloaded-data', # Untar'ed
    dataset_variant='full', # 'full' for main CLEVRTEX, 'outd' for OOD, 'pbg','vbg','grassbg','camo' for variants.
    split='train',
    crop=True,
    resize=(128, 128),
    return_metadata=True # Useful only for evaluation, wastes time on I/O otherwise 
)
# Use collate_fn to handle metadata batching
dataloader = torch.utils.data.DataLoader(clevrtex, batch_size=BATCH, shuffle=True, collate_fn=collate_fn)

Evaluation

See CLEVRTEX_Evaluator in clevrtex_eval.py. It implements all the utilities needed.

CLEVR

This dataset builds upon CLEVR: A Diagnostic Dataset for Compositional Language and Elementary Visual Reasoning
Justin Johnson, Bharath Hariharan, Laurens van der Maaten, Fei-Fei Li, Larry Zitnick, Ross Girshick
presented at CVPR 2017, code available at https://github.com/facebookresearch/clevr-dataset-gen

In particular we use a method for computing cardinal directions from CLEVR. See the original licence included in the clevr_qa.py file.

BibTeX

If you use ClevrTex dataset or generation code consider citing:

BiBTeX coming soon...
Session-based Recommendation, CoHHN, price preferences, interest preferences, Heterogeneous Hypergraph, Co-guided Learning, SIGIR2022

This is our implementation for the paper: Price DOES Matter! Modeling Price and Interest Preferences in Session-based Recommendation Xiaokun Zhang, Bo

Xiaokun Zhang 27 Dec 02, 2022
Cartoon-StyleGan2 🙃 : Fine-tuning StyleGAN2 for Cartoon Face Generation

Fine-tuning StyleGAN2 for Cartoon Face Generation

Jihye Back 520 Jan 04, 2023
ReConsider is a re-ranking model that re-ranks the top-K (passage, answer-span) predictions of an Open-Domain QA Model like DPR (Karpukhin et al., 2020).

ReConsider ReConsider is a re-ranking model that re-ranks the top-K (passage, answer-span) predictions of an Open-Domain QA Model like DPR (Karpukhin

Facebook Research 47 Jul 26, 2022
Res2Net for Instance segmentation and Object detection using MaskRCNN

Res2Net for Instance segmentation and Object detection using MaskRCNN Since the MaskRCNN-benchmark of facebook is deprecated, we suggest to use our mm

Res2Net Applications 55 Oct 30, 2022
Implementation of "The Power of Scale for Parameter-Efficient Prompt Tuning"

Prompt-Tuning Implementation of "The Power of Scale for Parameter-Efficient Prompt Tuning" Currently, we support the following huggigface models: Bart

Andrew Zeng 36 Dec 19, 2022
Python wrapper class for OpenVINO Model Server. User can submit inference request to OVMS with just a few lines of code

Python wrapper class for OpenVINO Model Server. User can submit inference request to OVMS with just a few lines of code.

Yasunori Shimura 7 Jul 27, 2022
🛠️ SLAMcore SLAM Utilities

slamcore_utils Description This repo contains the slamcore-setup-dataset script. It can be used for installing a sample dataset for offline testing an

SLAMcore 7 Aug 04, 2022
Simulated garment dataset for virtual try-on

Simulated garment dataset for virtual try-on This repository contains the dataset used in the following papers: Self-Supervised Collision Handling via

33 Dec 20, 2022
Lazy, a tool for running things in idle time

Lazy, a tool for running things in idle time Mostly used to stop CUDA ML model training from making my desktop unusable. Simply monitors keyboard/mous

N Shepperd 46 Nov 06, 2022
All materials of Cassandra Event, Udyam'22

Cassandra 2022 Workspace Workshop Materials Workshop-1 Workshop-2 Workshop-3 Workshop-4 Assignments Assignment-1 Assignment-2 Assignment-3 Resources P

36 Dec 31, 2022
PyTorch Implementation of Temporal Output Discrepancy for Active Learning, ICCV 2021

Temporal Output Discrepancy for Active Learning PyTorch implementation of Semi-Supervised Active Learning with Temporal Output Discrepancy, ICCV 2021.

Siyu Huang 33 Dec 06, 2022
Pytorch domain adaptation package

DomainAdaptation This package is created to tackle the problem of domain shifts when dealing with two domains of different feature distributions. In d

Institute of Computational Perception 7 Oct 22, 2022
Hitters Linear Regression - Hitters Linear Regression With Python

Hitters_Linear_Regression Kullanacağımız veri seti Carnegie Mellon Üniversitesi'

AyseBuyukcelik 2 Jan 26, 2022
Boosted CVaR Classification (NeurIPS 2021)

Boosted CVaR Classification Runtian Zhai, Chen Dan, Arun Sai Suggala, Zico Kolter, Pradeep Ravikumar NeurIPS 2021 Table of Contents Quick Start Train

Runtian Zhai 4 Feb 15, 2022
No-Reference Image Quality Assessment via Transformers, Relative Ranking, and Self-Consistency

This repository contains the implementation for the paper: No-Reference Image Quality Assessment via Transformers, Relative Ranking, and Self-Consiste

Alireza Golestaneh 75 Dec 30, 2022
Efficient Two-Step Networks for Temporal Action Segmentation (Neurocomputing 2021)

Efficient Two-Step Networks for Temporal Action Segmentation This repository provides a PyTorch implementation of the paper Efficient Two-Step Network

8 Apr 16, 2022
Official implementation of SIGIR'2021 paper: "Sequential Recommendation with Graph Neural Networks".

SURGE: Sequential Recommendation with Graph Neural Networks This is our TensorFlow implementation for the paper: Sequential Recommendation with Graph

FIB LAB, Tsinghua University 53 Dec 26, 2022
Pytorch Lightning Distributed Accelerators using Ray

Distributed PyTorch Lightning Training on Ray This library adds new PyTorch Lightning accelerators for distributed training using the Ray distributed

166 Dec 27, 2022
Danfeng Hong, Lianru Gao, Jing Yao, Bing Zhang, Antonio Plaza, Jocelyn Chanussot. Graph Convolutional Networks for Hyperspectral Image Classification, IEEE TGRS, 2021.

Graph Convolutional Networks for Hyperspectral Image Classification Danfeng Hong, Lianru Gao, Jing Yao, Bing Zhang, Antonio Plaza, Jocelyn Chanussot T

Danfeng Hong 154 Dec 13, 2022
[CVPR2022] Bridge-Prompt: Towards Ordinal Action Understanding in Instructional Videos

Bridge-Prompt: Towards Ordinal Action Understanding in Instructional Videos Created by Muheng Li, Lei Chen, Yueqi Duan, Zhilan Hu, Jianjiang Feng, Jie

58 Dec 23, 2022