Latte: Cross-framework Python Package for Evaluation of Latent-based Generative Models

Overview

Cross-framework Python Package for Evaluation of Latent-based Generative Models

Documentation Status CircleCI codecov CodeFactor License PyPI version DOI arXiv

Latte

Latte (for LATent Tensor Evaluation) is a cross-framework Python package for evaluation of latent-based generative models. Latte supports calculation of disentanglement and controllability metrics in both PyTorch (via TorchMetrics) and TensorFlow.

Installation

For developers working on local clone, cd to the repo and replace latte with .. For example, pip install .[tests]

pip install latte-metrics           # core (numpy only)
pip install latte-metrics[pytorch]  # with torchmetrics wrapper
pip install latte-metrics[keras]    # with tensorflow wrapper
pip install latte-metrics[tests]    # for testing

Running tests locally

pip install .[tests]
pytest tests/ --cov=latte

Example

Functional API

import latte
from latte.functional.disentanglement.mutual_info import mig
import numpy as np

latte.seed(42)

z = np.random.randn(16, 8)
a = np.random.randn(16, 2)

mutual_info_gap = mig(z, a, discrete=False, reg_dim=[4, 3])

Modular API

import latte
from latte.metrics.core.disentanglement import MutualInformationGap
import numpy as np

latte.seed(42)

mig = MutualInformationGap()

# ... 
# initialize data and model
# ...

for data, attributes in range(batches):
  recon, z = model(data)

  mig.update_state(z, attributes)

mig_val = mig.compute()

TorchMetrics API

import latte
from latte.metrics.torch.disentanglement import MutualInformationGap
import torch

latte.seed(42)

mig = MutualInformationGap()

# ... 
# initialize data and model
# ...

for data, attributes in range(batches):
  recon, z = model(data)

  mig.update(z, attributes)

mig_val = mig.compute()

Keras Metric API

import latte
from latte.metrics.keras.disentanglement import MutualInformationGap
from tensorflow import keras as tfk

latte.seed(42)

mig = MutualInformationGap()

# ... 
# initialize data and model
# ...

for data, attributes in range(batches):
  recon, z = model(data)

  mig.update_state(z, attributes)

mig_val = mig.result()

Documentation

https://latte.readthedocs.io/en/latest

Supported metrics

🧪 Beta support | ✔️ Stable | 🔨 In Progress | 🕣 In Queue | 👀 KIV |

Metric Latte Functional Latte Modular TorchMetrics Keras Metric
Disentanglement Metrics
📝 Mutual Information Gap (MIG) 🧪 🧪 🧪 ??
📝 Dependency-blind Mutual Information Gap (DMIG) 🧪 🧪 🧪 🧪
📝 Dependency-aware Mutual Information Gap (XMIG) 🧪 🧪 🧪 🧪
📝 Dependency-aware Latent Information Gap (DLIG) 🧪 🧪 🧪 🧪
📝 Separate Attribute Predictability (SAP) 🧪 🧪 🧪 🧪
📝 Modularity 🧪 🧪 🧪 🧪
📝 β-VAE Score 👀 👀 👀 👀
📝 FactorVAE Score 👀 👀 👀 👀
📝 DCI Score 👀 👀 👀 👀
📝 Interventional Robustness Score (IRS) 👀 👀 👀 👀
📝 Consistency 👀 👀 👀 👀
📝 Restrictiveness 👀 👀 👀 👀
Interpolatability Metrics
📝 Smoothness 🧪 🧪 🧪 🧪
📝 Monotonicity 🧪 🧪 🧪 🧪
📝 Latent Density Ratio 🕣 🕣 🕣 🕣
📝 Linearity 👀 👀 👀 👀

Bundled metric modules

🧪 Experimental (subject to changes) | ✔️ Stable | 🔨 In Progress | 🕣 In Queue

Metric Bundle Latte Functional Latte Modular TorchMetrics Keras Metric Included
Dependency-aware Disentanglement 🧪 🧪 🧪 🧪 MIG, DMIG, XMIG, DLIG
LIAD-based Interpolatability 🧪 🧪 🧪 🧪 Smoothness, Monotonicity

Cite

For individual metrics, please cite the paper according to the link in the 📝 icon in front of each metric.

If you find our package useful please cite our repository and arXiv preprint as

@article{
  watcharasupat2021latte,
  author = {Watcharasupat, Karn N. and Lee, Junyoung and Lerch, Alexander},
  title = {{Latte: Cross-framework Python Package for Evaluation of Latent-based Generative Models}},
  eprint={2112.10638},
  archivePrefix={arXiv},
  primaryClass={cs.LG},
  url = {https://github.com/karnwatcharasupat/latte}
  doi = {10.5281/zenodo.5786402}
}
Comments
  • Documentation: Metric Descriptions

    Documentation: Metric Descriptions

    Might be nice to provide a short description for each metric in addition to the paper links. The readme might get too long with it, but either some doc in the repo or maybe on a github.io page?

    type: documentation priority: high 
    opened by alexanderlerch 2
  • Add Smoothness and Monotonicity support

    Add Smoothness and Monotonicity support

    Smoothness

    • [x] Functional API
      • [x] implementation
      • [x] tests
    • [x] Base API
      • [x] implementation
      • [x] tests
    • [x] Torch API
      • [x] implementation
      • [x] tests
    • [x] Keras API
      • [x] implementation
      • [x] tests

    Monotonicity

    • [x] Functional API
      • [x] implementation
      • [x] tests
    • [x] Base API
      • [x] implementation
      • [x] tests
    • [x] Torch API
      • [x] implementation
      • [x] tests
    • [x] Keras API
      • [x] implementation
      • [x] tests
    type: enhancement 
    opened by karnwatcharasupat 0
  • Add Modularity support

    Add Modularity support

    • [x] Functional API
      • [x] implementation
      • [x] tests
    • [x] Base API
      • [x] implementation
      • [x] tests
    • [x] Torch API
      • [x] implementation
      • [x] tests
    • [x] Keras API
      • [x] implementation
      • [x] tests
    type: enhancement 
    opened by karnwatcharasupat 0
  • Add SAP support

    Add SAP support

    • [x] Functional API
      • [x] implementation
      • [x] tests
    • [x] Base API
      • [x] implementation
      • [x] tests
    • [x] Torch API
      • [x] implementation
      • [x] tests
    • [x] Keras API
      • [x] implementation
      • [x] tests
    type: enhancement 
    opened by karnwatcharasupat 0
  • Add DMIG, DLIG, XMIG support

    Add DMIG, DLIG, XMIG support

    DMIG

    • [x] Functional API
      • [x] implementation
      • [x] tests
    • [x] Base API
      • [x] implementation
      • [x] tests
    • [x] Torch API
      • [x] implementation
      • [x] tests
    • [x] Keras API
      • [x] implementation
      • [x] tests

    XMIG

    • [x] Functional API
      • [x] implementation
      • [x] tests
    • [x] Base API
      • [x] implementation
      • [x] tests
    • [x] Torch API
      • [x] implementation
      • [x] tests
    • [x] Keras API
      • [x] implementation
      • [x] tests

    DLIG

    • [ x] Functional API
      • [x] implementation
      • [x] tests
    • [x] Base API
      • [x] implementation
      • [x] tests
    • [x] Torch API
      • [x] implementation
      • [x] tests
    • [x] Keras API
      • [x] implementation
      • [x] tests
    type: enhancement 
    opened by karnwatcharasupat 0
  • Add MIG support

    Add MIG support

    • [x] Functional API
      • [x] implementation
      • [x] tests
    • [x] Base API
      • [x] implementation
      • [x] tests
    • [x] Torch API
      • [x] implementation
      • [x] tests
    • [x] Keras API
      • [x] implementation
      • [x] tests
    type: enhancement 
    opened by karnwatcharasupat 0
  • Support issue for on-the-fly computation in TF2 graph mode

    Support issue for on-the-fly computation in TF2 graph mode

    The current delegate-to-NumPy technique used in TF is only compatible with TF2 eager mode since Tensor.numpy() would not work in graph mode. As a result, graph-mode users will only be able to use Latte in the evaluation stage when the model weights are no longer changing but not on-the-fly during the training stage.

    However, certain computation steps required for some metrics (especially MI-based ones) necessarily require scikit-learn ops and there is no (maintainable) way to create consistent TF mirrors of those functions.

    One potential solution is to wrap the core functions in tf.numpy_function or tf.py_function but we will have to figure out a way to make the wrapper less painful to implement/maintain since the variable args/kwargs option currently used by the dtype converter is not allowed in these functions. A naive workaround would be to make a tf.numpy_function wrapper for every highest-possible level function with fixed args but this would be considered a last-resort solution.

    Links:

    • https://www.tensorflow.org/api_docs/python/tf/numpy_function
    • https://www.tensorflow.org/api_docs/python/tf/py_function
    type: enhancement priority: medium !! needs more brains !! 
    opened by karnwatcharasupat 3
Releases(v0.0.1-alpha5)
  • v0.0.1-alpha5(Jan 20, 2022)

    What's Changed

    • Add contributing guide by @karnwatcharasupat in https://github.com/karnwatcharasupat/latte/pull/16
    • [ADD] add example notebooks by @karnwatcharasupat in https://github.com/karnwatcharasupat/latte/pull/18

    Full Changelog: https://github.com/karnwatcharasupat/latte/compare/v0.0.1-alpha3...v0.0.1-alpha5

    Source code(tar.gz)
    Source code(zip)
  • v0.0.1-alpha3(Dec 16, 2021)

  • v0.0.1-alpha2(Dec 9, 2021)

  • v0.0.1-alpha1(Dec 1, 2021)

Owner
Karn Watcharasupat
Lab Cat 🐱🌈 | Audio Signal Processing Research Student. NTU EEE Class of 2022. Georgia Tech Music Tech Visiting Researcher.
Karn Watcharasupat
The InterScript dataset contains interactive user feedback on scripts generated by a T5-XXL model.

Interscript The Interscript dataset contains interactive user feedback on a T5-11B model generated scripts. Dataset data.json contains the data in an

AI2 8 Dec 01, 2022
The code for two papers: Feedback Transformer and Expire-Span.

transformer-sequential This repo contains the code for two papers: Feedback Transformer Expire-Span The training code is structured for long sequentia

Facebook Research 125 Dec 25, 2022
This repository contains python code necessary to replicated the experiments performed in our paper "Invariant Ancestry Search"

InvariantAncestrySearch This repository contains python code necessary to replicated the experiments performed in our paper "Invariant Ancestry Search

Phillip Bredahl Mogensen 0 Feb 02, 2022
A unified framework to jointly model images, text, and human attention traces.

connect-caption-and-trace This repository contains the reference code for our paper Connecting What to Say With Where to Look by Modeling Human Attent

Meta Research 73 Oct 24, 2022
Computer-Vision-Paper-Reviews - Computer Vision Paper Reviews with Key Summary along Papers & Codes

Computer-Vision-Paper-Reviews Computer Vision Paper Reviews with Key Summary along Papers & Codes. Jonathan Choi 2021 50+ Papers across Computer Visio

Jonathan Choi 2 Mar 17, 2022
A configurable, tunable, and reproducible library for CTR prediction

FuxiCTR This repo is the community dev version of the official release at huawei-noah/benchmark/FuxiCTR. Click-through rate (CTR) prediction is an cri

XUEPAI 397 Dec 30, 2022
A TensorFlow 2.x implementation of Masked Autoencoders Are Scalable Vision Learners

Masked Autoencoders Are Scalable Vision Learners A TensorFlow implementation of Masked Autoencoders Are Scalable Vision Learners [1]. Our implementati

Aritra Roy Gosthipaty 59 Dec 10, 2022
Data from "HateCheck: Functional Tests for Hate Speech Detection Models" (Röttger et al., ACL 2021)

In this repo, you can find the data from our ACL 2021 paper "HateCheck: Functional Tests for Hate Speech Detection Models". "test_suite_cases.csv" con

Paul Röttger 43 Nov 11, 2022
Reproducible research and reusable acyclic workflows in Python. Execute code on HPC systems as if you executed them on your personal computer!

Reproducible research and reusable acyclic workflows in Python. Execute code on HPC systems as if you executed them on your machine! Motivation Would

Joeri Hermans 15 Sep 11, 2022
验证码识别 深度学习 tensorflow 神经网络

captcha_tf2 验证码识别 深度学习 tensorflow 神经网络 使用卷积神经网络,对字符,数字类型验证码进行识别,tensorflow使用2.0以上 目前项目还在更新中,诸多bug,欢迎提出issue和PR, 希望和你一起共同完善项目。 实例demo 训练过程 优化器选择: Adam

5 Apr 28, 2022
Code for Deterministic Neural Networks with Appropriate Inductive Biases Capture Epistemic and Aleatoric Uncertainty

Deep Deterministic Uncertainty This repository contains the code for Deterministic Neural Networks with Appropriate Inductive Biases Capture Epistemic

Jishnu Mukhoti 69 Nov 28, 2022
Code for the prototype tool in our paper "CoProtector: Protect Open-Source Code against Unauthorized Training Usage with Data Poisoning".

CoProtector Code for the prototype tool in our paper "CoProtector: Protect Open-Source Code against Unauthorized Training Usage with Data Poisoning".

Zhensu Sun 1 Oct 26, 2021
Indices Matter: Learning to Index for Deep Image Matting

IndexNet Matting This repository includes the official implementation of IndexNet Matting for deep image matting, presented in our paper: Indices Matt

Hao Lu 357 Nov 26, 2022
Reproducing Results from A Hybrid Approach to Targeting Social Assistance

title author date output Reproducing Results from A Hybrid Approach to Targeting Social Assistance Lendie Follett and Heath Henderson 12/28/2021 html_

Lendie Follett 0 Jan 06, 2022
Establishing Strong Baselines for TripClick Health Retrieval; ECIR 2022

TripClick Baselines with Improved Training Data Welcome 🙌 to the hub-repo of our paper: Establishing Strong Baselines for TripClick Health Retrieval

Sebastian Hofstätter 3 Nov 03, 2022
Train Dense Passage Retriever (DPR) with a single GPU

Gradient Cached Dense Passage Retrieval Gradient Cached Dense Passage Retrieval (GC-DPR) - is an extension of the original DPR library. We introduce G

Luyu Gao 92 Jan 02, 2023
GPU-accelerated Image Processing library using OpenCL

pyclesperanto pyclesperanto is a python package for clEsperanto - a multi-language framework for GPU-accelerated image processing. clEsperanto uses Op

17 Dec 25, 2022
[SIGGRAPH 2021 Asia] DeepVecFont: Synthesizing High-quality Vector Fonts via Dual-modality Learning

DeepVecFont This is the official Pytorch implementation of the paper: Yizhi Wang and Zhouhui Lian. DeepVecFont: Synthesizing High-quality Vector Fonts

Yizhi Wang 146 Dec 18, 2022
code for Grapadora research paper experimentation

Road feature embedding selection method Code for research paper experimentation Abstract Traffic forecasting models rely on data that needs to be sens

Eric López Manibardo 0 May 26, 2022
Pytorch reimplement of the paper "A Novel Cascade Binary Tagging Framework for Relational Triple Extraction" ACL2020. The original code is written in keras.

CasRel-pytorch-reimplement Pytorch reimplement of the paper "A Novel Cascade Binary Tagging Framework for Relational Triple Extraction" ACL2020. The o

longlongman 170 Dec 01, 2022