Simple and flexible ML workflow engine.

Overview

Katana ML Skipper

PyPI - Python GitHub Stars GitHub Issues Current Version

This is a simple and flexible ML workflow engine. It helps to orchestrate events across a set of microservices and create executable flow to handle requests. Engine is designed to be configurable with any microservices. Enjoy!

Skipper

Author

Katana ML, Andrej Baranovskij

Instructions

Start/Stop

Docker Compose

Start:

docker-compose up --build -d

Stop:

docker-compose down

This will start RabbitMQ container. To run engine and services, navigate to related folders and follow instructions.

Web API FastAPI endpoint:

http://127.0.0.1:8080/api/v1/skipper/tasks/docs

Kubernetes

NGINX Ingress Controller:

If you are using local Kubernetes setup, install NGINX Ingress Controller

Build Docker images:

docker-compose -f docker-compose-kubernetes.yml build

Setup Kubernetes services:

./kubectl-setup.sh

Skipper API endpoint published through NGINX Ingress (you can setup your own host in /etc/hosts):

http://kubernetes.docker.internal/api/v1/skipper/tasks/docs

Check NGINX Ingress Controller pod name:

kubectl get pods -n ingress-nginx

Sample response, copy the name of 'Running' pod:

NAME                                       READY   STATUS      RESTARTS   AGE
ingress-nginx-admission-create-dhtcm       0/1     Completed   0          14m
ingress-nginx-admission-patch-x8zvw        0/1     Completed   0          14m
ingress-nginx-controller-fd7bb8d66-tnb9t   1/1     Running     0          14m

NGINX Ingress Controller logs:

kubectl logs -n ingress-nginx -f 
   

   

Skipper API logs:

kubectl logs -n katana-skipper -f -l app=skipper-api

Remove Kubernetes services:

./kubectl-remove.sh

Components

  • api - Web API implementation
  • workflow - workflow logic
  • services - a set of sample microservices, you should replace this with your own services. Update references in docker-compose.yml
  • rabbitmq - service for RabbitMQ broker
  • skipper-lib - reusable Python library to streamline event communication through RabbitMQ
  • logger - logger service

URLs

  • Web API
http://127.0.0.1:8080/api/v1/skipper/tasks/docs

If running on local Kubernetes with Docker Desktop:

http://kubernetes.docker.internal/api/v1/skipper/tasks/docs
  • RabbitMQ:
http://localhost:15672/ (skipper/welcome1)

If running on local Kubernets, make sure port forwarding is enabled:

kubectl -n rabbits port-forward rabbitmq-0 15672:15672
  • PyPI
https://pypi.org/project/skipper-lib/
  • OCI - deployment guide for Oracle Cloud

Usage

You can use Skipper engine to run Web API, workflow and communicate with a group of ML microservices implemented under services package.

Skipper can be deployed to any Cloud vendor with Kubernetes or Docker support. You can scale Skipper runtime on Cloud using Kubernetes commands.

License

Licensed under the Apache License, Version 2.0. Copyright 2020-2021 Katana ML, Andrej Baranovskij. Copy of the license.

Comments
  • Cache EventProducer

    Cache EventProducer

    I found that cache the EventProducer can improve performace 40%. I tried but it block may request when increase the speed test. Do you have suggest to fix that

    opened by manhtd98 7
  • Docker-compose up not working

    Docker-compose up not working

    Hi

    Thank you for the wonderful katana-skipper. I am trying to digest the library and execute the docker-compose.yml. But it seems like it is not working.

    Would appreciate it if you could take a look

    good first issue 
    opened by jamesee 6
  • Doc: How to add a new service with a new queue

    Doc: How to add a new service with a new queue

    How do we add a new service with a new queue called translator?

    1. I add a new router adding a new path for my new service defining a new prefix and tag named translator.
    2. I create a new request model for my new service in models.py containing task_type and expect a type translator and a payload
    3. I define a new service container with the correct variables and set my SERVICE=translator and QUEUE_NAME=skipper_translator

    I am able to call the new endpoint and it returns:

    task_id: "-", 
    task_status: "Success", 
    outcome: "<starlette.responses.JSONResponse object at 0x7ff2672dbed0>"
    

    However the container is never triggered.

    What am I missing?

    opened by ladrua 4
  • The difference between event_producer and exchange_producer

    The difference between event_producer and exchange_producer

    Hello, Thanks for sharing your ML workflow. I appreciate if you could explain the difference between event_producer and exchange_producer. event_producer is used to produce an event to rabbitmq, but exchange_producer is not clear to me. Can't we use event_producer in place of exchange_producer?

    good first issue 
    opened by fadishaar84 4
  • Encountering Authentication Issues

    Encountering Authentication Issues

    When I run the start command on docker I get the following error in the data-service container. Would greatly appreciate guidance on how to fix this issue. ` data-service katanaml/data-service RUNNING

    Traceback (most recent call last):

    File "main.py", line 19, in

    main()
    

    File "main.py", line 15, in main

    'http://127.0.0.1:5001/api/v1/skipper/logger/log_receiver'))
    

    File "/usr/local/lib/python3.7/site-packages/skipper_lib/events/event_receiver.py", line 16, in init

    credentials=credentials))
    

    File "/usr/local/lib/python3.7/site-packages/pika/adapters/blocking_connection.py", line 360, in init

    self._impl = self._create_connection(parameters, _impl_class)
    

    File "/usr/local/lib/python3.7/site-packages/pika/adapters/blocking_connection.py", line 451, in _create_connection

    raise self._reap_last_connection_workflow_error(error)
    

    pika.exceptions.AMQPConnectionError

    Traceback (most recent call last):

    File "main.py", line 19, in

    main()
    

    File "main.py", line 15, in main

    'http://127.0.0.1:5001/api/v1/skipper/logger/log_receiver'))
    

    File "/usr/local/lib/python3.7/site-packages/skipper_lib/events/event_receiver.py", line 16, in init

    credentials=credentials))
    

    File "/usr/local/lib/python3.7/site-packages/pika/adapters/blocking_connection.py", line 360, in init

    self._impl = self._create_connection(parameters, _impl_class)
    

    File "/usr/local/lib/python3.7/site-packages/pika/adapters/blocking_connection.py", line 451, in _create_connection

    raise self._reap_last_connection_workflow_error(error)
    

    pika.exceptions.ProbableAuthenticationError: ConnectionClosedByBroker: (403) 'ACCESS_REFUSED - Login was refused using authentication mechanism PLAIN. For details see the broker logfi`

    opened by LM-01 3
  • How can we move from docker compose to kubernetes?

    How can we move from docker compose to kubernetes?

    Hello Andrej, I would like to ask about how to move from docker-compose to Kubernetes, do we have to use some tools like kompose or other tools, I appreciate if you could guide me a little bit about how to perform this conversion to run our services on Skipper not using docker compose but kubernetes. Thank you.

    opened by fadishaar84 2
Releases(v1.1.0)
  • v1.1.0(Dec 11, 2021)

    This release of Katana ML Skipper includes:

    • Skipper Lib JS - support for Node.js containers
    • Error handling
    • Configurable FastAPI endpoints
    • Various improvements and bug fixes

    What's Changed

    • (README.md) Adding Andrej's profile url by @xandrade in https://github.com/katanaml/katana-skipper/pull/3

    New Contributors

    • @xandrade made their first contribution in https://github.com/katanaml/katana-skipper/pull/3

    Full Changelog: https://github.com/katanaml/katana-skipper/compare/v1.0.0...v1.1.0

    Source code(tar.gz)
    Source code(zip)
  • v1.0.0(Oct 9, 2021)

    First production release of Katana ML Skipper.

    Included:

    • Logger
    • Workflow
    • API async and sync
    • Services
    • Docker support
    • Kubernetes support
    • Tested on OCI Cloud

    Full Changelog: https://github.com/katanaml/katana-skipper/commits/v1.0.0

    Source code(tar.gz)
    Source code(zip)
Owner
Katana ML
Machine Learning for Business Automation
Katana ML
Code base of KU AIRS: SPARK Autonomous Vehicle Team

KU AIRS: SPARK Autonomous Vehicle Project Check this link for the blog post describing this project and the video of SPARK in simulation and on parkou

Mehmet Enes Erciyes 1 Nov 23, 2021
[HELP REQUESTED] Generalized Additive Models in Python

pyGAM Generalized Additive Models in Python. Documentation Official pyGAM Documentation: Read the Docs Building interpretable models with Generalized

daniel servén 747 Jan 05, 2023
Cohort Intelligence used to solve various mathematical functions

Cohort-Intelligence-for-Mathematical-Functions About Cohort Intelligence : Cohort Intelligence ( CI ) is an optimization technique. It attempts to mod

Aayush Khandekar 2 Oct 25, 2021
Distributed Computing for AI Made Simple

Project Home Blog Documents Paper Media Coverage Join Fiber users email list Uber Open Source 997 Dec 30, 2022

A benchmark of data-centric tasks from across the machine learning lifecycle.

A benchmark of data-centric tasks from across the machine learning lifecycle.

61 Dec 28, 2022
Reggy - Regressions with arbitrarily complex regularization terms

reggy Regressions with arbitrarily complex regularization terms. Currently suppo

Kim 1 Jan 20, 2022
ETNA is an easy-to-use time series forecasting framework.

ETNA is an easy-to-use time series forecasting framework. It includes built in toolkits for time series preprocessing, feature generation, a variety of predictive models with unified interface - from

Tinkoff.AI 674 Jan 07, 2023
Lightning ⚡️ fast forecasting with statistical and econometric models.

Nixtla Statistical ⚡️ Forecast Lightning fast forecasting with statistical and econometric models StatsForecast offers a collection of widely used uni

Nixtla 2.1k Dec 29, 2022
MLOps pipeline project using Amazon SageMaker Pipelines

This project shows steps to build an end to end MLOps architecture that covers data prep, model training, realtime and batch inference, build model registry, track lineage of artifacts and model drif

AWS Samples 3 Sep 16, 2022
DeepSpeed is a deep learning optimization library that makes distributed training easy, efficient, and effective.

DeepSpeed is a deep learning optimization library that makes distributed training easy, efficient, and effective. 10x Larger Models 10x Faster Trainin

Microsoft 8.4k Dec 30, 2022
My project contrasts K-Nearest Neighbors and Random Forrest Regressors on Real World data

kNN-vs-RFR My project contrasts K-Nearest Neighbors and Random Forrest Regressors on Real World data In many areas, rental bikes have been launched to

1 Oct 28, 2021
pandas, scikit-learn, xgboost and seaborn integration

pandas, scikit-learn and xgboost integration.

299 Dec 30, 2022
Mesh TensorFlow: Model Parallelism Made Easier

Mesh TensorFlow - Model Parallelism Made Easier Introduction Mesh TensorFlow (mtf) is a language for distributed deep learning, capable of specifying

1.3k Dec 26, 2022
This is an implementation of the proximal policy optimization algorithm for the C++ API of Pytorch

This is an implementation of the proximal policy optimization algorithm for the C++ API of Pytorch. It uses a simple TestEnvironment to test the algorithm

Martin Huber 59 Dec 09, 2022
Class-imbalanced / Long-tailed ensemble learning in Python. Modular, flexible, and extensible

IMBENS: Class-imbalanced Ensemble Learning in Python Language: English | Chinese/中文 Links: Documentation | Gallery | PyPI | Changelog | Source | Downl

Zhining Liu 176 Jan 04, 2023
2021 Machine Learning Security Evasion Competition

2021 Machine Learning Security Evasion Competition This repository contains code samples for the 2021 Machine Learning Security Evasion Competition. P

Fabrício Ceschin 8 May 01, 2022
onelearn: Online learning in Python

onelearn: Online learning in Python Documentation | Reproduce experiments | onelearn stands for ONE-shot LEARNning. It is a small python package for o

15 Nov 06, 2022
YouTube Spam Detection with python

YouTube Spam Detection This code deletes spam comment on youtube videos based on two characteristics (currently) If the author of the comment has a se

MohamadReza Taalebi 5 Sep 27, 2022
机器学习检测webshell

ai-webshell-detect 机器学习检测webshell,利用textcnn+简单二分类网络,基于keras,花了七天 检测原理: 从文件熵 文件长度 文件语句提取出特征,然后文件熵与长度送入二分类网络,文件语句送入textcnn 项目原理,介绍,怎么做出来的

Huoji's 56 Dec 14, 2022
inding a method to objectively quantify skill versus chance in games, using reinforcement learning

Skill-vs-chance-games-analysis - Finding a method to objectively quantify skill versus chance in games, using reinforcement learning

Marcus Chiam 4 Nov 19, 2022