Natural Language Processing Specialization

Overview

Natural Language Processing Specialization


WHAT I LEARNED


  • Use logistic regression, naïve Bayes, and word vectors to implement sentiment analysis, complete analogies & translate words.

  • Use dynamic programming, hidden Markov models, and word embeddings to implement autocorrect, autocomplete & identify part-of-speech tags for words.

  • Use recurrent neural networks, LSTMs, GRUs & Siamese networks in Trax for sentiment analysis, text generation & named entity recognition.

  • Use encoder-decoder, causal, & self-attention to machine translate complete sentences, summarize text, build chatbots & question-answering.

There are 4 Courses in this Specialization


Course 1 - Natural Language Processing with Classification and Vector Spaces

  • In the first course of the Natural Language Processing Specialization

  • I performed sentiment analysis of tweets using logistic regression and then naïve Bayes,

  • I used vector space models to discover relationships between words and used PCA to reduce the dimensionality of the vector space and visualize those relationships, and

  • I wrote a simple English to French translation algorithm using pre-computed word embeddings and locality-sensitive hashing to relate words via approximate k-nearest neighbor search.

Projects


Course 2 - Natural Language Processing with Probabilistic Models

  • In the second course of the Natural Language Processing Specialization

  • I wrote a simple auto-correct algorithm using minimum edit distance and dynamic programming,

  • I applied the Viterbi Algorithm for part-of-speech (POS) tagging, which is vital for computational linguistics,

  • I wrote a better auto-complete algorithm using an N-gram language model, and

  • I wrote my own Word2Vec model that uses a neural network to compute word embeddings using a continuous bag-of-words model.

Projects


Course 3 - Natural Language Processing with Sequence Models

  • In the third course of the Natural Language Processing Specialization

  • I trained a neural network with GLoVe word embeddings to perform sentiment analysis of tweets,

  • I generated synthetic Shakespeare text using a Gated Recurrent Unit (GRU) language model,

  • I trained a recurrent neural network to perform named entity recognition (NER) using LSTMs with linear layers, and

  • I used so-called ‘Siamese’ LSTM models to compare questions in a corpus and identify those that are worded differently but have the same meaning.

Projects


Course 4 - Natural Language Processing with Attention Models

Projects


Disclaimer


  • DeepLearning.AI makes course notes available for educational purposes.
  • Project solutions are just for educational purposes. I highly recommend trying and solving project/program assignments on your own.

All the best 🤘

Owner
Kaan BOKE
Data Scientist
Kaan BOKE
A program that uses real statistics to choose the best times to bet on BloxFlip's crash gamemode

Bloxflip Smart Bet A program that uses real statistics to choose the best times to bet on BloxFlip's crash gamemode. https://bloxflip.com/crash. THIS

43 Jan 05, 2023
Every Google, Azure & IBM text to speech voice for free

TTS-Grabber Quick thing i made about a year ago to download any text with any tts voice, over 630 voices to choose from currently. It will split the i

16 Dec 07, 2022
Nested Named Entity Recognition for Chinese Biomedical Text

CBio-NAMER CBioNAMER (Nested nAMed Entity Recognition for Chinese Biomedical Text) is our method used in CBLUE (Chinese Biomedical Language Understand

8 Dec 25, 2022
Simple, hackable offline speech to text - using the VOSK-API.

Simple, hackable offline speech to text - using the VOSK-API.

Campbell Barton 844 Jan 07, 2023
English loanwords in the world's languages

Wiktionary as CLDF Content cldf1 and cldf2 contain cldf-conform data sets with a total of 2 377 756 entries about the vocabulary of all 1403 languages

Viktor Martinović 3 Jan 14, 2022
[NeurIPS 2021] Code for Learning Signal-Agnostic Manifolds of Neural Fields

Learning Signal-Agnostic Manifolds of Neural Fields This is the uncleaned code for the paper Learning Signal-Agnostic Manifolds of Neural Fields. The

60 Dec 12, 2022
Code examples for my Write Better Python Code series on YouTube.

Write Better Python Code This repository contains the code examples used in my Write Better Python Code series published on YouTube: https:/

858 Dec 29, 2022
Web mining module for Python, with tools for scraping, natural language processing, machine learning, network analysis and visualization.

Pattern Pattern is a web mining module for Python. It has tools for: Data Mining: web services (Google, Twitter, Wikipedia), web crawler, HTML DOM par

Computational Linguistics Research Group 8.4k Dec 30, 2022
Deduplication is the task to combine different representations of the same real world entity.

Deduplication is the task to combine different representations of the same real world entity. This package implements deduplication using active learning. Active learning allows for rapid training wi

63 Nov 17, 2022
Code for text augmentation method leveraging large-scale language models

HyperMix Code for our paper GPT3Mix and conducting classification experiments using GPT-3 prompt-based data augmentation. Getting Started Installing P

NAVER AI 47 Dec 20, 2022
Russian words synonyms and antonyms

ru_synonyms Russian words synonyms and antonyms. Install pip install git+https://github.com/ahmados/rusynonyms.git Usage from ru_synonyms import Anto

sumekenov 7 Dec 14, 2022
Code for the paper "Are Sixteen Heads Really Better than One?"

Are Sixteen Heads Really Better than One? This repository contains code to reproduce the experiments in our paper Are Sixteen Heads Really Better than

Paul Michel 143 Dec 14, 2022
News-Articles-and-Essays - NLP (Topic Modeling and Clustering)

NLP T5 Project proposal Topic Modeling and Clustering of News-Articles-and-Essays Students: Nasser Alshehri Abdullah Bushnag Abdulrhman Alqurashi OVER

2 Jan 18, 2022
Beyond Masking: Demystifying Token-Based Pre-Training for Vision Transformers

beyond masking Beyond Masking: Demystifying Token-Based Pre-Training for Vision Transformers The code is coming Figure 1: Pipeline of token-based pre-

Yunjie Tian 23 Sep 27, 2022
Code for "Parallel Instance Query Network for Named Entity Recognition", accepted at ACL 2022.

README Code for Two-stage Identifier: "Parallel Instance Query Network for Named Entity Recognition", accepted at ACL 2022. For details of the model a

Yongliang Shen 45 Nov 29, 2022
Code for the paper TestRank: Bringing Order into Unlabeled Test Instances for Deep Learning Tasks

TestRank in Pytorch Code for the paper TestRank: Bringing Order into Unlabeled Test Instances for Deep Learning Tasks by Yu Li, Min Li, Qiuxia Lai, Ya

3 May 19, 2022
Cải thiện Elasticsearch trong bài toán semantic search sử dụng phương pháp Sentence Embeddings

Cải thiện Elasticsearch trong bài toán semantic search sử dụng phương pháp Sentence Embeddings Trong bài viết này mình sẽ sử dụng pretrain model SimCS

Vo Van Phuc 18 Nov 25, 2022
DeepPavlov Tutorials

DeepPavlov tutorials DeepPavlov: Sentence Classification with Word Embeddings DeepPavlov: Transfer Learning with BERT. Classification, Tagging, QA, Ze

Neural Networks and Deep Learning lab, MIPT 28 Sep 13, 2022
Translate - a PyTorch Language Library

NOTE PyTorch Translate is now deprecated, please use fairseq instead. Translate - a PyTorch Language Library Translate is a library for machine transl

775 Dec 24, 2022