Zero-Shot Text-to-Image Generation VQGAN+CLIP Dockerized

Overview

VQGAN-CLIP-Docker

About

Zero-Shot Text-to-Image Generation VQGAN+CLIP Dockerized

This is a stripped and minimal dependency repository for running locally or in production VQGAN+CLIP.

For a Google Colab notebook see the original repository.

Samples

Setup

Clone this repository and cd inside.

git clone https://github.com/kcosta42/VQGAN-CLIP-Docker.git
cd VQGAN-CLIP-Docker

Download a VQGAN model and put it in the ./models folder.

Dataset Link
ImageNet (f=16), 16384 vqgan_imagenet_f16_16384

For GPU capability, make sure you have CUDA installed on your system (tested with CUDA 11.1+).

  • 6 GB of VRAM is required to generate 256x256 images.
  • 11 GB of VRAM is required to generate 512x512 images.
  • 24 GB of VRAM is required to generate 1024x1024 images. (Untested)

Local

Install the Python requirements

python3 -m pip install -r requirements.txt

To know if you can run this on your GPU, the following command must return True.

python3 -c "import torch; print(torch.cuda.is_available());"

Docker

Make sure you have docker and docker-compose installed. nvidia-docker is needed if you want to run this on your GPU through Docker.

A Makefile is provided for ease of use.

make build  # Build the docker image

Usage

Two configuration file are provided ./configs/local.json and ./configs/docker.json. They are ready to go, but you may want to edit them to meet your need. Check the Configuration section to understand each field.

The resulting generations can be found in the ./outputs folder.

GPU

To run locally:

python3 -m scripts.generate -c ./configs/local.json

To run on docker:

make generate

CPU

To run locally:

DEVICE=cpu python3 -m scripts.generate -c ./configs/local.json

To run on docker:

make generate-cpu

Configuration

Argument Type Descriptions
prompts List[str] Text prompts
image_prompts List[FilePath] Image prompts / target image path
max_iterations int Number of iterations
save_freq int Save image iterations
size [int, int] Image size (width height)
init_image FilePath Initial image
init_noise str Initial noise image ['gradient','pixels']
init_weight float Initial weight
output_dir FilePath Path to output directory
models_dir FilePath Path to models cache directory
clip_model FilePath CLIP model path or name
vqgan_checkpoint FilePath VQGAN checkpoint path
vqgan_config FilePath VQGAN config path
noise_prompt_seeds List[int] Noise prompt seeds
noise_prompt_weights List[float] Noise prompt weights
step_size float Learning rate
cutn int Number of cuts
cut_pow float Cut power
seed int Seed (-1 for random seed)
optimizer str Optimiser ['Adam','AdamW','Adagrad','Adamax','DiffGrad','AdamP','RAdam']
augments List[str] Enabled augments ['Ji','Sh','Gn','Pe','Ro','Af','Et','Ts','Cr','Er','Re']

Acknowledgments

VQGAN+CLIP

Taming Transformers

CLIP

DALLE-PyTorch

Citations

@misc{unpublished2021clip,
    title  = {CLIP: Connecting Text and Images},
    author = {Alec Radford, Ilya Sutskever, Jong Wook Kim, Gretchen Krueger, Sandhini Agarwal},
    year   = {2021}
}
@misc{esser2020taming,
      title={Taming Transformers for High-Resolution Image Synthesis},
      author={Patrick Esser and Robin Rombach and Björn Ommer},
      year={2020},
      eprint={2012.09841},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}
@misc{ramesh2021zeroshot,
    title   = {Zero-Shot Text-to-Image Generation},
    author  = {Aditya Ramesh and Mikhail Pavlov and Gabriel Goh and Scott Gray and Chelsea Voss and Alec Radford and Mark Chen and Ilya Sutskever},
    year    = {2021},
    eprint  = {2102.12092},
    archivePrefix = {arXiv},
    primaryClass = {cs.CV}
}
Owner
Kevin Costa
Machine Learning Engineer. Previously Student @ 42 Paris
Kevin Costa
A Transformer-Based Siamese Network for Change Detection

ChangeFormer: A Transformer-Based Siamese Network for Change Detection (Under review at IGARSS-2022) Wele Gedara Chaminda Bandara, Vishal M. Patel Her

Wele Gedara Chaminda Bandara 214 Dec 29, 2022
Efficient Householder transformation in PyTorch

Efficient Householder Transformation in PyTorch This repository implements the Householder transformation algorithm for calculating orthogonal matrice

Anton Obukhov 49 Nov 20, 2022
TensorFlow 2 implementation of the Yahoo Open-NSFW model

TensorFlow 2 implementation of the Yahoo Open-NSFW model

Bosco Yung 101 Jan 01, 2023
Accuracy Aligned. Concise Implementation of Swin Transformer

Accuracy Aligned. Concise Implementation of Swin Transformer This repository contains the implementation of Swin Transformer, and the training codes o

FengWang 77 Dec 16, 2022
PyTorch code for 'Efficient Single Image Super-Resolution Using Dual Path Connections with Multiple Scale Learning'

Efficient Single Image Super-Resolution Using Dual Path Connections with Multiple Scale Learning This repository is for EMSRDPN introduced in the foll

7 Feb 10, 2022
Fast SHAP value computation for interpreting tree-based models

FastTreeSHAP FastTreeSHAP package is built based on the paper Fast TreeSHAP: Accelerating SHAP Value Computation for Trees published in NeurIPS 2021 X

LinkedIn 369 Jan 04, 2023
Facial Image Inpainting with Semantic Control

Facial Image Inpainting with Semantic Control In this repo, we provide a model for the controllable facial image inpainting task. This model enables u

Ren Yurui 8 Nov 22, 2021
CS506-Spring2022 - Code and Slides for Boston University CS 506

CS 506 - Computational Tools for Data Science Code, slides, and notes for Boston

Lance Galletti 17 May 06, 2022
The `rtdl` library + The official implementation of the paper

The `rtdl` library + The official implementation of the paper "Revisiting Deep Learning Models for Tabular Data"

Yandex Research 510 Dec 30, 2022
Human motion synthesis using Unity3D

Human motion synthesis using Unity3D Prerequisite: Software: amc2bvh.exe, Unity 2017, Blender. Unity: RockVR (Video Capture), scenes, character models

Hao Xu 9 Jun 01, 2022
Tesla Light Show xLights Guide With python

Tesla Light Show xLights Guide Welcome to the Tesla Light Show xLights guide! You can create and run your own light shows on Tesla vehicles. Running a

Tesla, Inc. 2.5k Dec 29, 2022
Code and data for paper "Deep Photo Style Transfer"

deep-photo-styletransfer Code and data for paper "Deep Photo Style Transfer" Disclaimer This software is published for academic and non-commercial use

Fujun Luan 9.9k Dec 29, 2022
Jupyter notebooks for using & learning Keras

deep-learning-with-keras-notebooks 這個github的repository主要是個人在學習Keras的一些記錄及練習。希望在學習過程中發現到一些好的資訊與範例也可以對想要學習使用 Keras來解決問題的同好,或是對深度學習有興趣的在學學生可以有一些方便理解與上手範例

ErhWen Kuo 2.1k Dec 27, 2022
Implement the Pareto Optimizer and pcgrad to make a self-adaptive loss for multi-task

multi-task_losses_optimizer Implement the Pareto Optimizer and pcgrad to make a self-adaptive loss for multi-task 已经实验过了,不会有cuda out of memory情况 ##Par

14 Dec 25, 2022
CARL provides highly configurable contextual extensions to several well-known RL environments.

CARL (context adaptive RL) provides highly configurable contextual extensions to several well-known RL environments.

AutoML-Freiburg-Hannover 51 Dec 28, 2022
一个运行在 𝐞𝐥𝐞𝐜𝐕𝟐𝐏 或 𝐪𝐢𝐧𝐠𝐥𝐨𝐧𝐠 等定时面板的签到项目

定时面板上的签到盒 一个运行在 𝐞𝐥𝐞𝐜𝐕𝟐𝐏 或 𝐪𝐢𝐧𝐠𝐥𝐨𝐧𝐠 等定时面板的签到项目 𝐞𝐥𝐞𝐜𝐕𝟐𝐏 𝐪𝐢𝐧𝐠𝐥𝐨𝐧𝐠 特别声明 本仓库发布的脚本及其中涉及的任何解锁和解密分析脚本,仅用于测试和学习研究,禁止用于商业用途,不能保证其合

Leon 1.1k Dec 30, 2022
Model Serving Made Easy

The easiest way to build Machine Learning APIs BentoML makes moving trained ML models to production easy: Package models trained with any ML framework

BentoML 4.4k Jan 08, 2023
Source Code for AAAI 2022 paper "Graph Convolutional Networks with Dual Message Passing for Subgraph Isomorphism Counting and Matching"

Graph Convolutional Networks with Dual Message Passing for Subgraph Isomorphism Counting and Matching This repository is an official implementation of

HKUST-KnowComp 13 Sep 08, 2022
TensorFlow-based implementation of "Pyramid Scene Parsing Network".

PSPNet_tensorflow Important Code is fine for inference. However, the training code is just for reference and might be only used for fine-tuning. If yo

HsuanKung Yang 323 Dec 20, 2022
A Comparative Review of Recent Kinect-Based Action Recognition Algorithms (TIP2020, Matlab codes)

A Comparative Review of Recent Kinect-Based Action Recognition Algorithms This repo contains: the HDG implementation (Matlab codes) for 'Analysis and

Lei Wang 5 Oct 22, 2022