Official PyTorch Implementation of Mask-aware IoU and maYOLACT Detector [BMVC2021]

Overview

The official implementation of Mask-aware IoU and maYOLACT detector. Our implementation is based on mmdetection.

Mask-aware IoU for Anchor Assignment in Real-time Instance Segmentation,
Kemal Oksuz, Baris Can Cam, Fehmi Kahraman, Zeynep Sonat Baltaci, Emre Akbas, Sinan Kalkan, BMVC 2021. (arXiv pre-print)

Summary

Mask-aware IoU: Mask-aware IoU (maIoU) is an IoU variant for better anchor assignment to supervise instance segmentation methods. Unlike the standard IoU, Mask-aware IoU also considers the ground truth masks while assigning a proximity score for an anchor. As a result, for example, if an anchor box overlaps with a ground truth box, but not with the mask of the ground truth, e.g. due to occlusion, then it has a lower score compared to IoU. Please check out the examples below for more insight. Replacing IoU by our maIoU in the state of the art ATSS assigner yields both performance improvement and efficiency (i.e. faster inference) compared to the standard YOLACT method.

maYOLACT Detector: Thanks to the efficiency due to ATSS with maIoU assigner, we incorporate more training tricks into YOLACT, and built maYOLACT Detector which is still real-time but significantly powerful (around 6 AP) than YOLACT. Our best maYOLACT model reaches SOTA performance by 37.7 mask AP on COCO test-dev at 25 fps.

How to Cite

Please cite the paper if you benefit from our paper or the repository:

@inproceedings{maIoU,
       title = {Mask-aware IoU for Anchor Assignment in Real-time Instance Segmentation},
       author = {Kemal Oksuz and Baris Can Cam and Fehmi Kahraman and Zeynep Sonat Baltaci and Sinan Kalkan and Emre Akbas},
       booktitle = {The British Machine Vision Conference (BMCV)},
       year = {2021}
}

Specification of Dependencies and Preparation

  • Please see get_started.md for requirements and installation of mmdetection.
  • Please refer to introduction.md for dataset preparation and basic usage of mmdetection.

Trained Models

Here, we report results in terms of AP (higher better) and oLRP (lower better).

Multi-stage Object Detection

Comparison of Different Assigners (on COCO minival)

Scale Assigner mask AP mask oLRP Log Config Model
400 Fixed IoU 24.8 78.3 log config model
400 ATSS w. IoU 25.3 77.7 log config model
400 ATSS w. maIoU 26.1 77.1 log config model
550 Fixed IoU 28.5 75.2 log config model
550 ATSS w. IoU 29.3 74.5 log config model
550 ATSS w. maIoU 30.4 73.7 log config model
700 Fixed IoU 29.7 74.3 log config model
700 ATSS w. IoU 30.8 73.3 log config model
700 ATSS w. maIoU 31.8 72.5 log config model

maYOLACT Detector (on COCO test-dev)

Scale Backbone mask AP fps Log Config Model
maYOLACT-550 ResNet-50 35.2 30 Coming Soon
maYOLACT-700 ResNet-50 37.7 25 Coming Soon

Running the Code

Training Code

The configuration files of all models listed above can be found in the configs/mayolact folder. You can follow get_started.md for training code. As an example, to train maYOLACT using images with 550 scale on 4 GPUs as we did, use the following command:

./tools/dist_train.sh configs/mayolact/mayolact_r50_4x8_coco_scale550.py 4

Test Code

The configuration files of all models listed above can be found in the configs/mayolact folder. You can follow get_started.md for test code. As an example, first download a trained model using the links provided in the tables below or you train a model, then run the following command to test a model model on multiple GPUs:

./tools/dist_test.sh configs/mayolact/mayolact_r50_4x8_coco_scale550.py ${CHECKPOINT_FILE} 4 --eval bbox segm 

You can also test a model on a single GPU with the following example command:

python tools/test.py configs/mayolact/mayolact_r50_4x8_coco_scale550.py ${CHECKPOINT_FILE} --eval bbox segm
Owner
Kemal Oksuz
Kemal Oksuz
Brax is a differentiable physics engine that simulates environments made up of rigid bodies, joints, and actuators

Brax is a differentiable physics engine that simulates environments made up of rigid bodies, joints, and actuators. It's also a suite of learning algorithms to train agents to operate in these enviro

Google 1.5k Jan 02, 2023
StyleSpace Analysis: Disentangled Controls for StyleGAN Image Generation

StyleSpace Analysis: Disentangled Controls for StyleGAN Image Generation Demo video: CVPR 2021 Oral: Single Channel Manipulation: Localized or attribu

Zongze Wu 267 Dec 30, 2022
Proposal, Tracking and Segmentation (PTS): A Cascaded Network for Video Object Segmentation

Proposal, Tracking and Segmentation (PTS): A Cascaded Network for Video Object Segmentation By Qiang Zhou*, Zilong Huang*, Lichao Huang, Han Shen, Yon

Forest 117 Apr 01, 2022
The Official PyTorch Implementation of "VAEBM: A Symbiosis between Variational Autoencoders and Energy-based Models" (ICLR 2021 spotlight paper)

Official PyTorch implementation of "VAEBM: A Symbiosis between Variational Autoencoders and Energy-based Models" (ICLR 2021 Spotlight Paper) Zhisheng

NVIDIA Research Projects 45 Dec 26, 2022
Author: Wenhao Yu ([email protected]). ACL 2022. Commonsense Reasoning on Knowledge Graph for Text Generation

Diversifying Commonsense Reasoning Generation on Knowledge Graph Introduction -- This is the pytorch implementation of our ACL 2022 paper "Diversifyin

DM2 Lab @ ND 61 Dec 30, 2022
Human Pose Detection on EdgeTPU

Coral PoseNet Pose estimation refers to computer vision techniques that detect human figures in images and video, so that one could determine, for exa

google-coral 476 Dec 31, 2022
CBKH: The Cornell Biomedical Knowledge Hub

Cornell Biomedical Knowledge Hub (CBKH) CBKG integrates data from 18 publicly available biomedical databases. The current version of CBKG contains a t

44 Dec 21, 2022
Instant Real-Time Example-Based Style Transfer to Facial Videos

FaceBlit: Instant Real-Time Example-Based Style Transfer to Facial Videos The official implementation of FaceBlit: Instant Real-Time Example-Based Sty

Aneta Texler 131 Dec 19, 2022
OpenMMLab Detection Toolbox and Benchmark

MMDetection is an open source object detection toolbox based on PyTorch. It is a part of the OpenMMLab project.

OpenMMLab 22.5k Jan 05, 2023
Computational inteligence project on faces in the wild dataset

Table of Contents The general idea How these scripts work? Loading data Needed modules and global variables Parsing the arrays in dataset Extracting a

tooraj taraz 4 Oct 21, 2022
The AWS Certified SysOps Administrator

The AWS Certified SysOps Administrator – Associate (SOA-C02) exam is intended for system administrators in a cloud operations role who have at least 1 year of hands-on experience with deployment, man

Aiden Pearce 32 Dec 11, 2022
Efficient face emotion recognition in photos and videos

This repository contains code of face emotion recognition that was developed in the RSF (Russian Science Foundation) project no. 20-71-10010 (Efficien

Andrey Savchenko 239 Jan 04, 2023
Code for paper Novel View Synthesis via Depth-guided Skip Connections

Novel View Synthesis via Depth-guided Skip Connections Code for paper Novel View Synthesis via Depth-guided Skip Connections @InProceedings{Hou_2021_W

8 Mar 14, 2022
This is my research project for the Irving Center for Cancer Dynamics/Azizi Lab, Columbia University.

bayesian_uncertainty This is my research project for the Irving Center for Cancer Dynamics/Azizi Lab, Columbia University. In this project I build a s

Max David Gupta 1 Feb 13, 2022
Parameterized Explainer for Graph Neural Network

PGExplainer This is a Tensorflow implementation of the paper: Parameterized Explainer for Graph Neural Network https://arxiv.org/abs/2011.04573 NeurIP

Dongsheng Luo 89 Dec 12, 2022
A flexible ML framework built to simplify medical image reconstruction and analysis experimentation.

meddlr Getting Started Meddlr is a config-driven ML framework built to simplify medical image reconstruction and analysis problems. Installation To av

Arjun Desai 36 Dec 16, 2022
Deduplicating Training Data Makes Language Models Better

Deduplicating Training Data Makes Language Models Better This repository contains code to deduplicate language model datasets as descrbed in the paper

Google Research 431 Dec 27, 2022
Code for paper 'Hand-Object Contact Consistency Reasoning for Human Grasps Generation' at ICCV 2021

GraspTTA Hand-Object Contact Consistency Reasoning for Human Grasps Generation (ICCV 2021). Project Page with Videos Demo Quick Results Visualization

Hanwen Jiang 47 Dec 09, 2022
Alignment Attention Fusion framework for Few-Shot Object Detection

AAF framework Framework generalities This repository contains the code of the AAF framework proposed in this paper. The main idea behind this work is

Pierre Le Jeune 20 Dec 16, 2022
A multi-scale unsupervised learning for deformable image registration

A multi-scale unsupervised learning for deformable image registration Shuwei Shao, Zhongcai Pei, Weihai Chen, Wentao Zhu, Xingming Wu and Baochang Zha

ShuweiShao 2 Apr 13, 2022