Dynamical Wasserstein Barycenters for Time Series Modeling

Overview

Dynamical Wasserstein Barycenters for Time Series Modeling

This is the code related for the Dynamical Wasserstein Barycenter model published in Neurips 2021.

To run the code and replicate the results reported in our paper,

# usage: DynamicalWassersteinBarycenters.py dataSet dataFile debugFolder interpModel [--ParamTest PARAMTEST] [--lambda LAM] [--s S]

# Sample run on MSR data                                         
>> python DynamicalWassersteinBarycenters.py MSR_Batch ../Data/MSR_Data/subj090_1.mat ../debug/MSR/subj001_1.mat Wass 

# Sample run for parameter test
>> python DynamicalWassersteinBarycenters.py MSR_Batch ../Data/MSR_Data/subj090_1.mat ../debug/ParamTest/subj001_1.mat Wass --ParamTest 1 --lambda 100 --s 1.0

The interpMethod is either Wass` for the Wasserstein barycentric model or GMM`` for the linear interpolation model.

Simulated Data

The simulated data and experiment included in this supplement can be replicated using using the following commands.

# Generate 2 and 3 state simulated data                                         
>> python GenerateOptimizationExperimentData.py
>> python GenerateOptimizationExperimentData_3K.py

# usage: OptimizationExperiment.py FileIn Mode File
# Sample run for optimization experiment
>> python OptimizationExperiment.py ../data/SimulatedOptimizationData_2K/dim_5_5.mat/ WB ../debug/SimulatedData/dim_5_5_out.mat 

The Mode is either WB for Wasserstein-Bures geometry and Euc for Euclidean geometry using Cholesky decomposition parameterization.

Requirements

_libgcc_mutex=0.1=conda_forge
_openmp_mutex=4.5=1_llvm
_pytorch_select=0.2=gpu_0
blas=2.17=openblas
ca-certificates=2020.12.5=ha878542_0
certifi=2020.12.5=py38h578d9bd_1
cffi=1.14.4=py38h261ae71_0
cudatoolkit=8.0=3
cudnn=7.1.3=cuda8.0_0
cycler=0.10.0=py_2
freetype=2.10.4=h7ca028e_0
future=0.18.2=py38h578d9bd_3
immutables=0.15=py38h497a2fe_0
intel-openmp=2020.2=254
joblib=1.0.0=pyhd8ed1ab_0
jpeg=9d=h36c2ea0_0
kiwisolver=1.3.1=py38h82cb98a_0
lcms2=2.11=hcbb858e_1
ld_impl_linux-64=2.33.1=h53a641e_7
libblas=3.8.0=17_openblas
libcblas=3.8.0=17_openblas
libedit=3.1.20191231=h14c3975_1
libffi=3.3=he6710b0_2
libgcc-ng=9.3.0=h5dbcf3e_17
libgfortran-ng=7.3.0=hdf63c60_0
libgomp=9.3.0=h5dbcf3e_17
liblapack=3.8.0=17_openblas
liblapacke=3.8.0=17_openblas
libopenblas=0.3.10=pthreads_hb3c22a3_4
libpng=1.6.37=h21135ba_2
libstdcxx-ng=9.3.0=h6de172a_18
libtiff=4.1.0=h4f3a223_6
libwebp-base=1.1.0=h36c2ea0_3
llvm-openmp=11.0.0=hfc4b9b4_1
lz4-c=1.9.2=he1b5a44_3
matplotlib-base=3.3.3=py38h5c7f4ab_0
mkl=2020.4=h726a3e6_304
mkl-service=2.3.0=py38he904b0f_0
mkl_fft=1.3.0=py38h5c078b8_1
mkl_random=1.2.0=py38hc5bc63f_1
ncurses=6.2=he6710b0_1
ninja=1.10.2=py38hff7bd54_0
numpy=1.19.5=py38h18fd61f_1
numpy-base=1.18.5=py38h2f8d375_0
olefile=0.46=pyh9f0ad1d_1
openssl=1.1.1k=h7f98852_0
pillow=8.1.0=py38h357d4e7_1
pip=20.3.3=py38h06a4308_0
pot=0.7.0=py38h950e882_0
pycparser=2.20=py_2
pyparsing=2.4.7=pyh9f0ad1d_0
python=3.8.5=h7579374_1
python-dateutil=2.8.1=py_0
python_abi=3.8=1_cp38
pytorch=1.7.1=cpu_py38h36eccb8_1
readline=8.0=h7b6447c_0
scikit-learn=0.24.1=py38h658cfdd_0
scipy=1.5.2=py38h8c5af15_0
setuptools=51.1.2=py38h06a4308_4
six=1.15.0=py38h06a4308_0
sqlite=3.33.0=h62c20be_0
threadpoolctl=2.1.0=pyh5ca1d4c_0
tk=8.6.10=hbc83047_0
tornado=6.1=py38h497a2fe_1
wheel=0.36.2=pyhd3eb1b0_0
xz=5.2.5=h7b6447c_0
zlib=1.2.11=h7b6447c_3
zstd=1.4.5=h6597ccf_2
Generic U-Net Tensorflow implementation for image segmentation

Tensorflow Unet Warning This project is discontinued in favour of a Tensorflow 2 compatible reimplementation of this project found under https://githu

Joel Akeret 1.8k Dec 10, 2022
Pytorch Lightning Distributed Accelerators using Ray

Distributed PyTorch Lightning Training on Ray This library adds new PyTorch Lightning accelerators for distributed training using the Ray distributed

166 Dec 27, 2022
This repo is about to create the Streamlit application for given ML model.

HR-Attritiion-using-Streamlit This repo is about to create the Streamlit application for given ML model. Problem Statement: Managing peoples at workpl

Pavan Giri 0 Dec 10, 2021
Time-stretch audio clips quickly with PyTorch (CUDA supported)! Additional utilities for searching efficient transformations are included.

Time-stretch audio clips quickly with PyTorch (CUDA supported)! Additional utilities for searching efficient transformations are included.

Kento Nishi 22 Jul 07, 2022
Zero-Shot Text-to-Image Generation VQGAN+CLIP Dockerized

VQGAN-CLIP-Docker About Zero-Shot Text-to-Image Generation VQGAN+CLIP Dockerized This is a stripped and minimal dependency repository for running loca

Kevin Costa 73 Sep 11, 2022
Source code for the paper "PLOME: Pre-training with Misspelled Knowledge for Chinese Spelling Correction" in ACL2021

PLOME:Pre-training with Misspelled Knowledge for Chinese Spelling Correction (ACL2021) This repository provides the code and data of the work in ACL20

197 Nov 26, 2022
Official PyTorch implementation of PICCOLO: Point-Cloud Centric Omnidirectional Localization (ICCV 2021)

Official PyTorch implementation of PICCOLO: Point-Cloud Centric Omnidirectional Localization (ICCV 2021)

16 Nov 19, 2022
Keras implementation of "One pixel attack for fooling deep neural networks" using differential evolution on Cifar10 and ImageNet

One Pixel Attack How simple is it to cause a deep neural network to misclassify an image if an attacker is only allowed to modify the color of one pix

Dan Kondratyuk 1.2k Dec 26, 2022
A minimal solution to hand motion capture from a single color camera at over 100fps. Easy to use, plug to run.

Minimal Hand A minimal solution to hand motion capture from a single color camera at over 100fps. Easy to use, plug to run. This project provides the

Yuxiao Zhou 824 Jan 07, 2023
Mscp jamf - Build compliance in jamf

mscp_jamf Build compliance in Jamf. This will build the following xml pieces to

Bob Gendler 3 Jul 25, 2022
Python PID Tuner - Based on a FOPDT model obtained using a Open Loop Process Reaction Curve

PythonPID_Tuner Step 1: Takes a Process Reaction Curve in csv format - assumes data at 100ms interval (column names CV and PV) Step 2: Makes a rough e

6 Jan 14, 2022
OpenAi's gym environment wrapper to vectorize them with Ray

Ray Vector Environment Wrapper You would like to use Ray to vectorize your environment but you don't want to use RLLib ? You came to the right place !

Pierre TASSEL 15 Nov 10, 2022
Graph Self-Attention Network for Learning Spatial-Temporal Interaction Representation in Autonomous Driving

GSAN Introduction Code for paper GSAN: Graph Self-Attention Network for Learning Spatial-Temporal Interaction Representation in Autonomous Driving, wh

YE Luyao 6 Oct 27, 2022
MinkLoc3D-SI: 3D LiDAR place recognition with sparse convolutions,spherical coordinates, and intensity

MinkLoc3D-SI: 3D LiDAR place recognition with sparse convolutions,spherical coordinates, and intensity Introduction The 3D LiDAR place recognition aim

16 Dec 08, 2022
This is a package for LiDARTag, described in paper: LiDARTag: A Real-Time Fiducial Tag System for Point Clouds

LiDARTag Overview This is a package for LiDARTag, described in paper: LiDARTag: A Real-Time Fiducial Tag System for Point Clouds (PDF)(arXiv). This wo

University of Michigan Dynamic Legged Locomotion Robotics Lab 159 Dec 21, 2022
Ganilla - Official Pytorch implementation of GANILLA

GANILLA We provide PyTorch implementation for: GANILLA: Generative Adversarial Networks for Image to Illustration Translation. Paper Arxiv Updates (Fe

Samet Hi 462 Dec 05, 2022
The Simplest DCGAN Implementation

DCGAN in TensorLayer This is the TensorLayer implementation of Deep Convolutional Generative Adversarial Networks. Looking for Text to Image Synthesis

TensorLayer Community 310 Dec 13, 2022
Enhancing Knowledge Tracing via Adversarial Training

Enhancing Knowledge Tracing via Adversarial Training This repository contains source code for the paper "Enhancing Knowledge Tracing via Adversarial T

Xiaopeng Guo 14 Oct 24, 2022
clustering moroccan stocks time series data using k-means with dtw (dynamic time warping)

Moroccan Stocks Clustering Context Hey! we don't always have to forecast time series am I right ? We use k-means to cluster about 70 moroccan stock pr

Ayman Lafaz 7 Oct 18, 2022
DP-CL(Continual Learning with Differential Privacy)

DP-CL(Continual Learning with Differential Privacy) This is the official implementation of the Continual Learning with Differential Privacy. If you us

Phung Lai 3 Nov 04, 2022