Japanese NLP Library

Overview

Japanese NLP Library


Back to Home

1   Requirements

1.1   Links

  • All code at jProcessing Repo GitHub
  • PyPi Python Package
clone [email protected]:kevincobain2000/jProcessing.git

1.2   Install

In Terminal

bash$ python setup.py install

1.3   History

  • 0.2

    • Sentiment Analysis of Japanese Text
  • 0.1
    • Morphologically Tokenize Japanese Sentence
    • Kanji / Hiragana / Katakana to Romaji Converter
    • Edict Dictionary Search - borrowed
    • Edict Examples Search - incomplete
    • Sentence Similarity between two JP Sentences
    • Run Cabocha(ISO--8859-1 configured) in Python.
    • Longest Common String between Sentences
    • Kanji to Katakana Pronunciation
    • Hiragana, Katakana Chart Parser

2   Libraries and Modules

2.1   Tokenize jTokenize.py

In Python

>>> from jNlp.jTokenize import jTokenize
>>> input_sentence = u'私は彼を5日前、つまりこの前の金曜日に駅で見かけた'
>>> list_of_tokens = jTokenize(input_sentence)
>>> print list_of_tokens
>>> print '--'.join(list_of_tokens).encode('utf-8')

Returns:

... [u'\u79c1', u'\u306f', u'\u5f7c', u'\u3092', u'\uff15'...]
... 私--は--彼--を--5--日--前--、--つまり--この--前--の--金曜日--に--駅--で--見かけ--た

Katakana Pronunciation:

>>> print '--'.join(jReads(input_sentence)).encode('utf-8')
... ワタシ--ハ--カレ--ヲ--ゴ--ニチ--マエ--、--ツマリ--コノ--マエ--ノ--キンヨウビ--ニ--エキ--デ--ミカケ--タ

2.2   Cabocha jCabocha.py

Run Cabocha with original EUCJP or IS0-8859-1 configured encoding, with utf8 python

>>> from jNlp.jCabocha import cabocha
>>> print cabocha(input_sentence).encode('utf-8')

Output:

">
<sentence>
 <chunk id="0" link="8" rel="D" score="0.971639" head="0" func="1">
  <tok id="0" read="ワタシ" base="" pos="名詞-代名詞-一般" ctype="" cform="" ne="O">私tok>
  <tok id="1" read="" base="" pos="助詞-係助詞" ctype="" cform="" ne="O">はtok>
 chunk>
 <chunk id="1" link="2" rel="D" score="0.488672" head="2" func="3">
  <tok id="2" read="カレ" base="" pos="名詞-代名詞-一般" ctype="" cform="" ne="O">彼tok>
  <tok id="3" read="" base="" pos="助詞-格助詞-一般" ctype="" cform="" ne="O">をtok>
 chunk>
 <chunk id="2" link="8" rel="D" score="2.25834" head="6" func="6">
  <tok id="4" read="" base="" pos="名詞-数" ctype="" cform="" ne="B-DATE">5tok>
  <tok id="5" read="ニチ" base="" pos="名詞-接尾-助数詞" ctype="" cform="" ne="I-DATE">日tok>
  <tok id="6" read="マエ" base="" pos="名詞-副詞可能" ctype="" cform="" ne="I-DATE">前tok>
  <tok id="7" read="" base="" pos="記号-読点" ctype="" cform="" ne="O">、tok>
 chunk>

2.3   Kanji / Katakana /Hiragana to Tokenized Romaji jConvert.py

Uses data/katakanaChart.txt and parses the chart. See katakanaChart.

>>> from jNlp.jConvert import *
>>> input_sentence = u'気象庁が21日午前4時48分、発表した天気概況によると、'
>>> print ' '.join(tokenizedRomaji(input_sentence))
>>> print tokenizedRomaji(input_sentence)
...kisyoutyou ga ni ichi nichi gozen yon ji yon hachi hun  hapyou si ta tenki gaikyou ni yoru to
...[u'kisyoutyou', u'ga', u'ni', u'ichi', u'nichi', u'gozen',...]

katakanaChart.txt

2.4   Longest Common String Japanese jProcessing.py

On English Strings

>>> from jNlp.jProcessing import long_substr
>>> a = 'Once upon a time in Italy'
>>> b = 'Thre was a time in America'
>>> print long_substr(a, b)

Output

...a time in

On Japanese Strings

>>> a = u'これでアナタも冷え知らず'
>>> b = u'これでア冷え知らずナタも'
>>> print long_substr(a, b).encode('utf-8')

Output

...冷え知らず

2.5   Similarity between two sentences jProcessing.py

Uses MinHash by checking the overlap http://en.wikipedia.org/wiki/MinHash

English Strings:
>>> from jNlp.jProcessing import Similarities
>>> s = Similarities()
>>> a = 'There was'
>>> b = 'There is'
>>> print s.minhash(a,b)
...0.444444444444
Japanese Strings:
>>> from jNlp.jProcessing import *
>>> a = u'これは何ですか?'
>>> b = u'これはわからないです'
>>> print s.minhash(' '.join(jTokenize(a)), ' '.join(jTokenize(b)))
...0.210526315789

3   Edict Japanese Dictionary Search with Example sentences

3.1   Sample Ouput Demo

3.2   Edict dictionary and example sentences parser.

This package uses the EDICT and KANJIDIC dictionary files. These files are the property of the Electronic Dictionary Research and Development Group , and are used in conformance with the Group's licence .

Edict Parser By Paul Goins, see edict_search.py Edict Example sentences Parse by query, Pulkit Kathuria, see edict_examples.py Edict examples pickle files are provided but latest example files can be downloaded from the links provided.

3.3   Charset

Two files

  • utf8 Charset example file if not using src/jNlp/data/edict_examples

    To convert EUCJP/ISO-8859-1 to utf8

    iconv -f EUCJP -t UTF-8 path/to/edict_examples > path/to/save_with_utf-8
    
  • ISO-8859-1 edict_dictionary file

Outputs example sentences for a query in Japanese only for ambiguous words.

3.4   Links

Latest Dictionary files can be downloaded here

3.5   edict_search.py

author: Paul Goins License included linkToOriginal:

For all entries of sense definitions

>>> from jNlp.edict_search import *
>>> query = u'認める'
>>> edict_path = 'src/jNlp/data/edict-yy-mm-dd'
>>> kp = Parser(edict_path)
>>> for i, entry in enumerate(kp.search(query)):
...     print entry.to_string().encode('utf-8')

3.6   edict_examples.py

Note: Only outputs the examples sentences for ambiguous words (if word has one or more senses)
author: Pulkit Kathuria
>>> from jNlp.edict_examples import *
>>> query = u'認める'
>>> edict_path = 'src/jNlp/data/edict-yy-mm-dd'
>>> edict_examples_path = 'src/jNlp/data/edict_examples'
>>> search_with_example(edict_path, edict_examples_path, query)

Output

認める

Sense (1) to recognize;
  EX:01 我々は彼の才能を*認*めている。We appreciate his talent.

Sense (2) to observe;
  EX:01 x線写真で異状が*認*められます。We have detected an abnormality on your x-ray.

Sense (3) to admit;
  EX:01 母は私の計画をよいと*認*めた。Mother approved my plan.
  EX:02 母は決して私の結婚を*認*めないだろう。Mother will never approve of my marriage.
  EX:03 父は決して私の結婚を*認*めないだろう。Father will never approve of my marriage.
  EX:04 彼は女性の喫煙をいいものだと*認*めない。He doesn't approve of women smoking.
  ...

4   Sentiment Analysis Japanese Text

This section covers (1) Sentiment Analysis on Japanese text using Word Sense Disambiguation, Wordnet-jp (Japanese Word Net file name wnjpn-all.tab), SentiWordnet (English SentiWordNet file name SentiWordNet_3.*.txt).

4.1   Wordnet files download links

  1. http://nlpwww.nict.go.jp/wn-ja/eng/downloads.html
  2. http://sentiwordnet.isti.cnr.it/

4.2   How to Use

The following classifier is baseline, which works as simple mapping of Eng to Japanese using Wordnet and classify on polarity score using SentiWordnet.

  • (Adnouns, nouns, verbs, .. all included)
  • No WSD module on Japanese Sentence
  • Uses word as its common sense for polarity score
>>> from jNlp.jSentiments import *
>>> jp_wn = '../../../../data/wnjpn-all.tab'
>>> en_swn = '../../../../data/SentiWordNet_3.0.0_20100908.txt'
>>> classifier = Sentiment()
>>> classifier.train(en_swn, jp_wn)
>>> text = u'監督、俳優、ストーリー、演出、全部最高!'
>>> print classifier.baseline(text)
...Pos Score = 0.625 Neg Score = 0.125
...Text is Positive

4.3   Japanese Word Polarity Score

>>> from jNlp.jSentiments import *
>>> jp_wn = '_dicts/wnjpn-all.tab' #path to Japanese Word Net
>>> en_swn = '_dicts/SentiWordNet_3.0.0_20100908.txt' #Path to SentiWordNet
>>> classifier = Sentiment()
>>> sentiwordnet, jpwordnet  = classifier.train(en_swn, jp_wn)
>>> positive_score = sentiwordnet[jpwordnet[u'全部']][0]
>>> negative_score = sentiwordnet[jpwordnet[u'全部']][1]
>>> print 'pos score = {0}, neg score = {1}'.format(positive_score, negative_score)
...pos score = 0.625, neg score = 0.0

5   Contacts

Author: pulkit[at]jaist.ac.jp [change at with @]
Tools to download and cleanup Common Crawl data

cc_net Tools to download and clean Common Crawl as introduced in our paper CCNet. If you found these resources useful, please consider citing: @inproc

Meta Research 483 Jan 02, 2023
Conversational-AI-ChatBot - Intelligent ChatBot built with Microsoft's DialoGPT transformer to make conversations with human users!

Conversational AI ChatBot Intelligent ChatBot built with Microsoft's DialoGPT transformer to make conversations with human users! In this project? Thi

Rajkumar Lakshmanamoorthy 6 Nov 30, 2022
LOT: A Benchmark for Evaluating Chinese Long Text Understanding and Generation

LOT: A Benchmark for Evaluating Chinese Long Text Understanding and Generation Tasks | Datasets | LongLM | Baselines | Paper Introduction LOT is a ben

46 Dec 28, 2022
Sentence Embeddings with BERT & XLNet

Sentence Transformers: Multilingual Sentence Embeddings using BERT / RoBERTa / XLM-RoBERTa & Co. with PyTorch This framework provides an easy method t

Ubiquitous Knowledge Processing Lab 9.1k Jan 02, 2023
BERTAC (BERT-style transformer-based language model with Adversarially pretrained Convolutional neural network)

BERTAC (BERT-style transformer-based language model with Adversarially pretrained Convolutional neural network) BERTAC is a framework that combines a

6 Jan 24, 2022
Modeling cumulative cases of Covid-19 in the US during the Covid 19 Delta wave using Bayesian methods.

Introduction The goal of this analysis is to find a model that fits the observed cumulative cases of COVID-19 in the US, starting in Mid-July 2021 and

Alexander Keeney 1 Jan 05, 2022
The Internet Archive Research Assistant - Daily search Internet Archive for new items matching your keywords

The Internet Archive Research Assistant - Daily search Internet Archive for new items matching your keywords

Kay Savetz 60 Dec 25, 2022
SentimentArcs: a large ensemble of dozens of sentiment analysis models to analyze emotion in text over time

SentimentArcs - Emotion in Text An end-to-end pipeline based on Jupyter notebooks to detect, extract, process and anlayze emotion over time in text. E

jon_chun 14 Dec 19, 2022
An open source library for deep learning end-to-end dialog systems and chatbots.

DeepPavlov is an open-source conversational AI library built on TensorFlow, Keras and PyTorch. DeepPavlov is designed for development of production re

Neural Networks and Deep Learning lab, MIPT 6k Dec 30, 2022
Différents programmes créant une interface graphique a l'aide de Tkinter pour simplifier la vie des étudiants.

GP211-Grand-Projet Ce repertoire contient tout les programmes nécessaires au bon fonctionnement de notre projet-logiciel. Cette interface graphique es

1 Dec 21, 2021
Phomber is infomation grathering tool that reverse search phone numbers and get their details, written in python3.

A Infomation Grathering tool that reverse search phone numbers and get their details ! What is phomber? Phomber is one of the best tools available fo

S41R4J 121 Dec 27, 2022
VoiceFixer VoiceFixer is a framework for general speech restoration.

VoiceFixer VoiceFixer is a framework for general speech restoration. We aim at the restoration of severly degraded speech and historical speech. Paper

Leo 174 Jan 06, 2023
A PyTorch implementation of paper "Learning Shared Semantic Space for Speech-to-Text Translation", ACL (Findings) 2021

Chimera: Learning Shared Semantic Space for Speech-to-Text Translation This is a Pytorch implementation for the "Chimera" paper Learning Shared Semant

Chi Han 43 Dec 28, 2022
A model library for exploring state-of-the-art deep learning topologies and techniques for optimizing Natural Language Processing neural networks

A Deep Learning NLP/NLU library by Intel® AI Lab Overview | Models | Installation | Examples | Documentation | Tutorials | Contributing NLP Architect

Intel Labs 2.9k Dec 31, 2022
An implementation of the Pay Attention when Required transformer

Pay Attention when Required (PAR) Transformer-XL An implementation of the Pay Attention when Required transformer from the paper: https://arxiv.org/pd

7 Aug 11, 2022
Host your own GPT-3 Discord bot

GPT3 Discord Bot Host your own GPT-3 Discord bot i'd host and make the bot invitable myself, however GPT3 terms of service prohibit public use of GPT3

[something hillarious here] 8 Jan 07, 2023
Python api wrapper for JellyFish Lights

Python api wrapper for JellyFish Lights The hope is to make this a pip installable package Current capabalilities: Connects to a local JellyFish Light

10 Dec 18, 2022
Mlcode - Continuous ML API Integrations

mlcode Basic APIs for ML applications. Django REST Application Contains REST API

Sujith S 1 Jan 01, 2022
Python package to easily retrain OpenAI's GPT-2 text-generating model on new texts

gpt-2-simple A simple Python package that wraps existing model fine-tuning and generation scripts for OpenAI's GPT-2 text generation model (specifical

Max Woolf 3.1k Jan 07, 2023
A fast and lightweight python-based CTC beam search decoder for speech recognition.

pyctcdecode A fast and feature-rich CTC beam search decoder for speech recognition written in Python, providing n-gram (kenlm) language model support

Kensho 315 Dec 21, 2022