A forecasting system dedicated to smart city data

Overview

smart-city-predictions

System prognostyczny dedykowany dla danych inteligentnych miast

Praca inżynierska realizowana przez Michała Stawikowskiego and Witolda Merkela

Abstrakt

Celem pracy było zaprojektowanie i realizacja systemu informatycznego, który wykorzy-stuje środowiska składowania i przetwarzania danych wielkoskalowych (ang. Big Data) dopozyskiwania strumieni danych z inteligentnych miast (ang. Smart City) oraz metody uczeniamaszynowego do prognozowania na podstawie tych danych. System powinien mieć otwartąarchitekturę, która umożliwia dołączanie nowych źródeł danych oraz dołączanie nowychkomponentów, które tworzą zbiory uczące i testowe na potrzeby uczenia modeli klasyfikacyjnychi regresyjnych oraz wykonują prognozy z użyciem tych modeli. Postawione cele zostały zreali-zowane. W ramach systemu zostały zaimplementowane przykładowe komponenty pozyskiwaniadanych z różnych źródeł danych oraz ich składowanie, wykorzystujące uznane platformy BigData. Dodatkowo zostały stworzone przykładowe komponenty, które na podstawie zgroma-dzonych danych wykonują proces uczenia modeli klasyfikacyjnych i regresyjnych, a następniewyznaczają i udostępniają prognozowane wartości oraz statystyki uczenia modeli. W celuprezentacji informacji oraz wyników działania systemu zaimplementowano graficzny interfejsużytkownika. Na pracę składa się dogłębna analiza problemu, przedstawienie procesu projekto-wania systemu, opis działania stworzonych modułów, a także dokładna dokumentacja techniczna.

Przewodnik po repozytorium

  • data_for_ml - folder zawierający podstawowe operacje na danych. Funkcje zawarte w tym folderze służą przygotowaniu danych do uczenia maszynowego.
  • flask-with-auth - folder zawierający część aplikacji odpowiedzialną na graficzny interfejs użytkownika. Tutaj znajduje się baza danych użytkowników, kody .html, .css i .js odpowiedzialne za zarzadzanie poszczególnymi stronami oraz serwer w Flask.
  • flow_authomatization - folder zawierający funkcje odpowiedzialne za zarządzanie procesem trenowania modeli uczenia maszynowego oraz predykcji.
  • nifi - folder zawierający schematy wykorzystywanych przepływów w Apache NiFi.
  • spark_ml - zawiera funkcje tworzące modele regresyjne jak i klasyfikatory oraz dokunujące predykcji.
  • speed_layer - zawiera funkcje zarządzające przetwarzaniem strumieniowym oraz zapisem predykcji do Apache Cassandra.
Owner
Kevin Lai
Kevin Lai
INFO-H515 - Big Data Scalable Analytics

INFO-H515 - Big Data Scalable Analytics Jacopo De Stefani, Giovanni Buroni, Théo Verhelst and Gianluca Bontempi - Machine Learning Group Exercise clas

Yann-Aël Le Borgne 58 Dec 11, 2022
Zipline, a Pythonic Algorithmic Trading Library

Zipline is a Pythonic algorithmic trading library. It is an event-driven system for backtesting. Zipline is currently used in production as the backte

Quantopian, Inc. 15.7k Jan 07, 2023
Demonstrate the breadth and depth of your data science skills by earning all of the Databricks Data Scientist credentials

Data Scientist Learning Plan Demonstrate the breadth and depth of your data science skills by earning all of the Databricks Data Scientist credentials

Trung-Duy Nguyen 27 Nov 01, 2022
Full automated data pipeline using docker images

Create postgres tables from CSV files This first section is only relate to creating tables from CSV files using postgres container alone. Just one of

1 Nov 21, 2021
This is an analysis and prediction project for house prices in King County, USA based on certain features of the house

This is a project for analysis and estimation of House Prices in King County USA The .csv file contains the data of the house and the .ipynb file con

Amit Prakash 1 Jan 21, 2022
Tkinter Izhikevich Neuron Model With Python

TKINTER IZHIKEVICH NEURON MODEL WITH PYTHON Hodgkin-Huxley Model It is a mathematical model for the generation and transmission of action potentials i

Rabia KOÇ 8 Jul 16, 2022
track your GitHub statistics

GitHub-Stalker track your github statistics 👀 features find new followers or unfollowers find who got a star on your project or remove stars find who

Bahadır Araz 34 Nov 18, 2022
Pandas and Dask test helper methods with beautiful error messages.

beavis Pandas and Dask test helper methods with beautiful error messages. test helpers These test helper methods are meant to be used in test suites.

Matthew Powers 18 Nov 28, 2022
My first Python project is a simple Mad Libs program.

Python CLI Mad Libs Game My first Python project is a simple Mad Libs program. Mad Libs is a phrasal template word game created by Leonard Stern and R

Carson Johnson 1 Dec 10, 2021
Validated, scalable, community developed variant calling, RNA-seq and small RNA analysis

Validated, scalable, community developed variant calling, RNA-seq and small RNA analysis. You write a high level configuration file specifying your in

Blue Collar Bioinformatics 917 Jan 03, 2023
Data Analysis for First Year Laboratory at Imperial College, London.

Data Analysis for First Year Laboratory at Imperial College, London. For personal reference only, and to reference in lab reports and lab books.

Martin He 0 Aug 29, 2022
Detecting Underwater Objects (DUO)

Underwater object detection for robot picking has attracted a lot of interest. However, it is still an unsolved problem due to several challenges. We take steps towards making it more realistic by ad

27 Dec 12, 2022
A powerful data analysis package based on mathematical step functions. Strongly aligned with pandas.

The leading use-case for the staircase package is for the creation and analysis of step functions. Pretty exciting huh. But don't hit the close button

48 Dec 21, 2022
Average time per match by division

HW_02 Unzip matches.rar to access .json files for matches. Get an API key to access their data at: https://developer.riotgames.com/ Average time per m

11 Jan 07, 2022
BErt-like Neurophysiological Data Representation

BENDR BErt-like Neurophysiological Data Representation This repository contains the source code for reproducing, or extending the BERT-like self-super

114 Dec 23, 2022
Analyse the limit order book in seconds. Zoom to tick level or get yourself an overview of the trading day.

Analyse the limit order book in seconds. Zoom to tick level or get yourself an overview of the trading day. Correlate the market activity with the Apple Keynote presentations.

2 Jan 04, 2022
PyPSA: Python for Power System Analysis

1 Python for Power System Analysis Contents 1 Python for Power System Analysis 1.1 About 1.2 Documentation 1.3 Functionality 1.4 Example scripts as Ju

758 Dec 30, 2022
A Pythonic introduction to methods for scaling your data science and machine learning work to larger datasets and larger models, using the tools and APIs you know and love from the PyData stack (such as numpy, pandas, and scikit-learn).

This tutorial's purpose is to introduce Pythonistas to methods for scaling their data science and machine learning work to larger datasets and larger models, using the tools and APIs they know and lo

Coiled 102 Nov 10, 2022
Office365 (Microsoft365) audit log analysis tool

Office365 (Microsoft365) audit log analysis tool The header describes it all WHY?? The first line of code was written long time before other colleague

Anatoly 1 Jul 27, 2022
Pipetools enables function composition similar to using Unix pipes.

Pipetools Complete documentation pipetools enables function composition similar to using Unix pipes. It allows forward-composition and piping of arbit

186 Dec 29, 2022