PySpark bindings for H3, a hierarchical hexagonal geospatial indexing system

Overview

H3 Logo

h3-pyspark: Uber's H3 Hexagonal Hierarchical Geospatial Indexing System in PySpark

PyPI version PyPI downloads conda version

Tests

PySpark bindings for the H3 core library.

For available functions, please see the vanilla Python binding documentation at:

Installation

From PyPI:

pip install h3-pyspark

From conda

conda config --add channels conda-forge
conda install h3-pyspark

Usage

>> >>> df = df.withColumn('h3_9', h3_pyspark.geo_to_h3('lat', 'lng', 'resolution')) >>> df.show() +---------+-----------+----------+---------------+ | lat| lng|resolution| h3_9| +---------+-----------+----------+---------------+ |37.769377|-122.388903| 9|89283082e73ffff| +---------+-----------+----------+---------------+ ">
>>> from pyspark.sql import SparkSession, functions as F
>>> import h3_pyspark
>>>
>>> spark = SparkSession.builder.getOrCreate()
>>> df = spark.createDataFrame([{"lat": 37.769377, "lng": -122.388903, 'resolution': 9}])
>>>
>>> df = df.withColumn('h3_9', h3_pyspark.geo_to_h3('lat', 'lng', 'resolution'))
>>> df.show()

+---------+-----------+----------+---------------+
|      lat|        lng|resolution|           h3_9|
+---------+-----------+----------+---------------+
|37.769377|-122.388903|         9|89283082e73ffff|
+---------+-----------+----------+---------------+

Publishing

  1. Bump version in setup.cfg
  2. Publish:
python3 -m build
python3 -m twine upload --repository pypi dist/*
Comments
  • 'TypeError: must be real number, not NoneType' when using h3_pyspark

    'TypeError: must be real number, not NoneType' when using h3_pyspark

    Hi, I have the following spark dataframe and the column of h3 indices is created by applying the lat, lng pairs and the resolution to h3_pypark.geo_to_h3(lat, lng, resolution) function. However I encountered the following error when I tried to check if there's any null in the index column. And it's not only isNull() not working but also any other subsetting operations which all throw me the same error, could anyone provide some insights on what might be the issue and how to fix it? Thanks in advance!

    dataframe: image

    errors: image

    opened by Tingmi 5
  • Fix indexing for polygons and lines

    Fix indexing for polygons and lines

    Catches some edge cases where h3_line and polyfill would miss. Could be overbroad, which is why the docstrings are changed to say superset, but at least it should be complete

    opened by rwaldman 1
  • Better error handling when null values are passed in

    Better error handling when null values are passed in

    Currently the behavior for all UDFs is that if any row in your dataframe has a null value, the entire build will fail.

    This type behavior would be better/more resilient:

    @F.udf(T.ArrayType(T.StringType()))
    def index_shape(geometry, resolution):
        if geometry is None:
            return None
        return _index_shape(geometry, resolution)
    
    opened by kevinschaich 1
  • Fix bug in index_shape function which missed hexes for long line segments

    Fix bug in index_shape function which missed hexes for long line segments

    Fixes #8

    Previous behavior for problematic line:

    Screen Shot 2022-02-24 at 3 40 36 PM

    New behavior for same line:

    Screen Shot 2022-02-24 at 4 02 47 PM

    Previous behavior for problematic polygon:

    Screen Shot 2022-02-24 at 4 34 59 PM

    New behavior for same polygon:

    Screen Shot 2022-02-24 at 4 35 46 PM

    cc: @deankieserman @rwaldman

    opened by kevinschaich 0
  • Bug in index_shape function which misses several hexes

    Bug in index_shape function which misses several hexes

    Reported by @rwaldman – we can miss several hexes in the worst case if a line's start and endpoints are east-to-west and towards the north or south edge:

    image

    Proposed solution is for long line segments (≥ s where s = hex side length) to interpolate several points along the line based on the selected resolution, so that we catch the ones in between:

    image
    opened by kevinschaich 0
  • polyfill fails with valid multipolygon geojson

    polyfill fails with valid multipolygon geojson

    h3_pyspark.polyfill fails when a valid multipolygon geojson is provided this is expected behavior when utilizing the h3 native library.

    however, i thought it would be helpful if this library is able to accept multipolygons. could I get permission to push a PR?

    implementation in src/h3_pyspark/__init__.py

    @F.udf(returnType=T.ArrayType(T.StringType()))
    @handle_nulls
    def polyfill(polygons, res, geo_json_conformant):
        # NOTE: this behavior differs from default
        # h3-pyspark expect `polygons` argument to be a valid GeoJSON string
        polygons = json.loads(polygons)
        type_ = polygons["type"].lower()
        if type_ == "multipolygon":
            output = []
            for i in polygons["coordinates"]:
                _polygon = {"type": "Polygon", "coordinates": i}
                output.extend(list(h3.polyfill(_polygon, res, geo_json_conformant)))
            return sanitize_types(output)
        return sanitize_types(h3.polyfill(polygons, res, geo_json_conformant))
    

    test in tests/test_core.py

    multipolygon = '{"type": "MultiPolygon","coordinates": [[[[108.98309290409088,13.240363245242063],[108.98343622684479,13.240363245242063],[108.98343622684479,13.240634779729014],[108.98309290409088,13.240634779729014],[108.98309290409088,13.240363245242063]]],[[[108.98349523544312,13.240002939397714],[108.98389220237732,13.240002939397714],[108.98389220237732,13.240269252464502],[108.98349523544312,13.240269252464502],[108.98349523544312,13.240002939397714]]]]}'
    
    def test_polyfill_multipolygon(self):
            h3_test_args, h3_pyspark_test_args = get_test_args(h3.polyfill)
            print(h3_pyspark_test_args)
            integer = 12
            data = {
                "res": integer,
                "geo_json_conformant": True,
                "geojson": multipolygon,
            }
            df = spark.createDataFrame([data])
            actual = df.withColumn("actual", h3_pyspark.polyfill(*h3_pyspark_test_args))
            actual = actual.collect()[0]["actual"]
            print(actual)
            expected = []
            for i in json.loads(multipolygon)["coordinates"]:
                _polygon = {"type": "Polygon", "coordinates": i}
                expected.extend(list(h3.polyfill(_polygon, integer, True)))
            expected = sanitize_types(expected)
            assert sort(actual) == sort(expected)
    
    opened by kangeugine 0
Releases(1.2.6)
  • 1.2.6(Mar 10, 2022)

  • 1.2.4(Mar 4, 2022)

    What's Changed

    • Handle null values in inputs to UDFs by @kevinschaich in https://github.com/kevinschaich/h3-pyspark/pull/10

    Full Changelog: https://github.com/kevinschaich/h3-pyspark/compare/1.2.3...1.2.4

    Source code(tar.gz)
    Source code(zip)
  • 1.2.3(Feb 24, 2022)

    What's Changed

    • Add error handling for bad geometries by @deankieserman in https://github.com/kevinschaich/h3-pyspark/pull/3
    • Fix bug in index_shape function which missed hexes for long line segments by @kevinschaich in https://github.com/kevinschaich/h3-pyspark/pull/9

    New Contributors

    • @deankieserman made their first contribution in https://github.com/kevinschaich/h3-pyspark/pull/3

    Full Changelog: https://github.com/kevinschaich/h3-pyspark/compare/1.2.2...1.2.3

    Source code(tar.gz)
    Source code(zip)
  • 1.1.0(Dec 8, 2021)

    What's Changed

    • Create LICENSE by @kevinschaich in https://github.com/kevinschaich/h3-pyspark/pull/1
    • Add extension functions (index_shape, k_ring_distinct) for spatial indexing & buffers by @kevinschaich in https://github.com/kevinschaich/h3-pyspark/pull/2

    New Contributors

    • @kevinschaich made their first contribution in https://github.com/kevinschaich/h3-pyspark/pull/1

    Full Changelog: https://github.com/kevinschaich/h3-pyspark/commits/1.1.0

    Source code(tar.gz)
    Source code(zip)
Owner
Kevin Schaich
Solving awesome problems @palantir. Part-time open source junkie. Purveyor of hot coffee and thoughtful photographs.
Kevin Schaich
Flood modeling by 2D shallow water equation

hydraulicmodel Flood modeling by 2D shallow water equation. Refer to Hunter et al (2005), Bates et al. (2010). Diffusive wave approximation Local iner

6 Nov 30, 2022
A python package which can be pip installed to perform statistics and visualize binomial and gaussian distributions of the dataset

GBiStat package A python package to assist programmers with data analysis. This package could be used to plot : Binomial Distribution of the dataset p

Rishikesh S 4 Oct 17, 2022
International Space Station data with Python research 🌎

International Space Station data with Python research 🌎 Plotting ISS trajectory, calculating the velocity over the earth and more. Plotting trajector

Facundo Pedaccio 41 Jun 16, 2022
ToeholdTools is a Python package and desktop app designed to facilitate analyzing and designing toehold switches, created as part of the 2021 iGEM competition.

ToeholdTools Category Status Repository Package Build Quality A library for the analysis of toehold switch riboregulators created by the iGEM team Cit

0 Dec 01, 2021
A Python package for modular causal inference analysis and model evaluations

Causal Inference 360 A Python package for inferring causal effects from observational data. Description Causal inference analysis enables estimating t

International Business Machines 506 Dec 19, 2022
Universal data analysis tools for atmospheric sciences

U_analysis Universal data analysis tools for atmospheric sciences Script written in python 3. This file defines multiple functions that can be used fo

Luis Ackermann 1 Oct 10, 2021
A simple and efficient tool to parallelize Pandas operations on all available CPUs

Pandaral·lel Without parallelization With parallelization Installation $ pip install pandarallel [--upgrade] [--user] Requirements On Windows, Pandara

Manu NALEPA 2.8k Dec 31, 2022
A distributed block-based data storage and compute engine

Nebula is an extremely-fast end-to-end interactive big data analytics solution. Nebula is designed as a high-performance columnar data storage and tabular OLAP engine.

Columns AI 131 Dec 26, 2022
VHub - An API that permits uploading of vulnerability datasets and return of the serialized data

VHub - An API that permits uploading of vulnerability datasets and return of the serialized data

André Rodrigues 2 Feb 14, 2022
Pip install minimal-pandas-api-for-polars

Minimal Pandas API for Polars Install From PyPI: pip install minimal-pandas-api-for-polars Example Usage (see tests/test_minimal_pandas_api_for_polars

Austin Ray 6 Oct 16, 2022
collect training and calibration data for gaze tracking

Collect Training and Calibration Data for Gaze Tracking This tool allows collecting gaze data necessary for personal calibration or training of eye-tr

Pascal 5 Dec 17, 2022
yt is an open-source, permissively-licensed Python library for analyzing and visualizing volumetric data.

The yt Project yt is an open-source, permissively-licensed Python library for analyzing and visualizing volumetric data. yt supports structured, varia

The yt project 367 Dec 25, 2022
ICLR 2022 Paper submission trend analysis

Visualize ICLR 2022 OpenReview Data

Jintang Li 75 Dec 06, 2022
Additional tools for particle accelerator data analysis and machine information

PyLHC Tools This package is a collection of useful scripts and tools for the Optics Measurements and Corrections group (OMC) at CERN. Documentation Au

PyLHC 3 Apr 13, 2022
Option Pricing Calculator using the Binomial Pricing Method (No Libraries Required)

Binomial Option Pricing Calculator Option Pricing Calculator using the Binomial Pricing Method (No Libraries Required) Background A derivative is a fi

sammuhrai 1 Nov 29, 2021
Airflow ETL With EKS EFS Sagemaker

Airflow ETL With EKS EFS & Sagemaker (en desarrollo) Diagrama de la solución Imp

1 Feb 14, 2022
songplays datamart provide details about the musical taste of our customers and can help us to improve our recomendation system

Songplays User activity datamart The following document describes the model used to build the songplays datamart table and the respective ETL process.

Leandro Kellermann de Oliveira 1 Jul 13, 2021
Projects that implement various aspects of Data Engineering.

DATAWAREHOUSE ON AWS The purpose of this project is to build a datawarehouse to accomodate data of active user activity for music streaming applicatio

2 Oct 14, 2021
Stitch together Nanopore tiled amplicon data without polishing a reference

Stitch together Nanopore tiled amplicon data using a reference guided approach Tiled amplicon data, like those produced from primers designed with pri

Amanda Warr 14 Aug 30, 2022
Show you how to integrate Zeppelin with Airflow

Introduction This repository is to show you how to integrate Zeppelin with Airflow. The philosophy behind the ingtegration is to make the transition f

Jeff Zhang 11 Dec 30, 2022