An easy-to-use Python module that helps you to extract the BERT embeddings for a large text dataset (Bengali/English) efficiently.

Overview

BERTify

This is an easy-to-use python module that helps you to extract the BERT embeddings for a large text dataset efficiently. It is intended to be used for Bengali and English texts.

Specially, optimized for usability in limited computational setups (i.e. free colab/kaggle GPUs). Extracting embeddings for IMDB dataset (a list of 25000 texts) took less than ~28 mins. on Colab's GPU. (Haven't perform any hardcore benchmark, so take these numbers with a grain of salt).

Requirements

  • numpy
  • torch
  • tqdm
  • transformers

Quick Installation

$ pip install git+https://github.com/khalidsaifullaah/BERTify

Usage

num. of texts, 4096 -> embedding dim.) # Example 2: English Embedding Extraction en_bertify = BERTify( lang="en", last_four_layers_embedding=True ) # bn_bertify.batch_size = 96 texts = ["how are you doing?", "I don't know about this.", "This is the most important thing."] en_embeddings = en_bertify.embedding(texts) # shape of the returned matrix in this example 3x3072 (3 -> num. of texts, 3072 -> embedding dim.) ">
from bertify import BERTify

# Example 1: Bengali Embedding Extraction
bn_bertify = BERTify(
    lang="bn",  # language of your text.
    last_four_layers_embedding=True  # to get richer embeddings.
)

# By default, `batch_size` is set to 64. Set `batch_size` higher for making things even faster but higher value than 96 may throw `CUDA out of memory` on Colab's GPU, so try at your own risk.

# bn_bertify.batch_size = 96

# A list of texts that we want the embedding for, can be one or many. (You can turn your whole dataset into a list of texts and pass it into the method for faster embedding extraction)
texts = ["বিখ্যাত হওয়ার প্রথম পদক্ষেপ", "জীবনে সবচেয়ে মূল্যবান জিনিস হচ্ছে", "বেশিরভাগ মানুষের পছন্দের জিনিস হচ্ছে"]

bn_embeddings = bn_bertify.embedding(texts)   # returns numpy matrix 
# shape of the returned matrix in this example 3x4096 (3 -> num. of texts, 4096 -> embedding dim.)




# Example 2: English Embedding Extraction
en_bertify = BERTify(
    lang="en",
    last_four_layers_embedding=True
)

# bn_bertify.batch_size = 96

texts = ["how are you doing?", "I don't know about this.", "This is the most important thing."]
en_embeddings = en_bertify.embedding(texts) 
# shape of the returned matrix in this example 3x3072 (3 -> num. of texts, 3072 -> embedding dim.)

Tips

  • Try passing all your text data through the .embedding() function at once by turning it into a list of texts.
  • For faster inference, make sure you're using your colab/kaggle GPU while making the .embedding() call
  • Try increasing the batch_size to make it even faster, by default we're using 64 (to be on the safe side) which doesn't throw any CUDA out of memory but I believe we can go even further. Thanks to Alex, from his empirical findings, it seems like it can be pushed until 96. So, before making the .embedding() call, you can do bertify.batch_zie=96 to set a larger batch_zie

Definitions


class BERTify(lang: str = "en", last_four_layers_embedding: bool = False)


A module for extracting embedding from BERT model for Bengali or English text datasets. For 'en' -> English data, it uses bert-base-uncased model embeddings, for 'bn' -> Bengali data, it uses sahajBERT model embeddings.

Parameters:

lang (str, optional): language of your data. Currently supports only 'en' and 'bn'. Defaults to 'en'. last_four_layers_embedding (bool, optional): BERT paper discusses they've reached the best results by concatenating the output of the last four layers, so if this argument is set to True, your embedding vector would be (for bert-base model for example) 4*768=3072 dimensional, otherwise it'd be 768 dimensional. Defaults to False.


def BERTify.embedding(texts: List[str])


The embedding function, that takes a list of texts, feed them through the model and returns a list of embeddings.

Parameters:

texts (List[str]): A list of texts, that you want to extract embedding for (e.g. ["This movie was a total waste of time.", "Whoa! Loved this movie, totally loved all the characters"])

Returns:

np.ndarray: A numpy matrix of shape num_of_texts x embedding_dimension

License

MIT License.

Owner
Khalid Saifullah
love to learn new things.
Khalid Saifullah
DELTA is a deep learning based natural language and speech processing platform.

DELTA - A DEep learning Language Technology plAtform What is DELTA? DELTA is a deep learning based end-to-end natural language and speech processing p

DELTA 1.5k Dec 26, 2022
💬 Open source machine learning framework to automate text- and voice-based conversations: NLU, dialogue management, connect to Slack, Facebook, and more - Create chatbots and voice assistants

Rasa Open Source Rasa is an open source machine learning framework to automate text-and voice-based conversations. With Rasa, you can build contextual

Rasa 15.3k Jan 03, 2023
🍊 PAUSE (Positive and Annealed Unlabeled Sentence Embedding), accepted by EMNLP'2021 🌴

PAUSE: Positive and Annealed Unlabeled Sentence Embedding Sentence embedding refers to a set of effective and versatile techniques for converting raw

EQT 21 Dec 15, 2022
A Persian Image Captioning model based on Vision Encoder Decoder Models of the transformers🤗.

Persian-Image-Captioning We fine-tuning the Vision Encoder Decoder Model for the task of image captioning on the coco-flickr-farsi dataset. The implem

Hamtech-ai 15 Aug 25, 2022
Translators - is a library which aims to bring free, multiple, enjoyable translation to individuals and students in Python

Translators - is a library which aims to bring free, multiple, enjoyable translation to individuals and students in Python

UlionTse 907 Dec 27, 2022
A program that uses real statistics to choose the best times to bet on BloxFlip's crash gamemode

Bloxflip Smart Bet A program that uses real statistics to choose the best times to bet on BloxFlip's crash gamemode. https://bloxflip.com/crash. THIS

43 Jan 05, 2023
This repository contains the codes for LipGAN. LipGAN was published as a part of the paper titled "Towards Automatic Face-to-Face Translation".

LipGAN Generate realistic talking faces for any human speech and face identity. [Paper] | [Project Page] | [Demonstration Video] Important Update: A n

Rudrabha Mukhopadhyay 438 Dec 31, 2022
Library of deep learning models and datasets designed to make deep learning more accessible and accelerate ML research.

Tensor2Tensor Tensor2Tensor, or T2T for short, is a library of deep learning models and datasets designed to make deep learning more accessible and ac

12.9k Jan 07, 2023
[EMNLP 2021] Mirror-BERT: Converting Pretrained Language Models to universal text encoders without labels.

[EMNLP 2021] Mirror-BERT: Converting Pretrained Language Models to universal text encoders without labels.

Cambridge Language Technology Lab 61 Dec 10, 2022
NLP - Machine learning

Flipkart-product-reviews NLP - Machine learning About Product reviews is an essential part of an online store like Flipkart’s branding and marketing.

Harshith VH 1 Oct 29, 2021
:hot_pepper: R²SQL: "Dynamic Hybrid Relation Network for Cross-Domain Context-Dependent Semantic Parsing." (AAAI 2021)

R²SQL The PyTorch implementation of paper Dynamic Hybrid Relation Network for Cross-Domain Context-Dependent Semantic Parsing. (AAAI 2021) Requirement

huybery 60 Dec 31, 2022
A fast, efficient universal vector embedding utility package.

Magnitude: a fast, simple vector embedding utility library A feature-packed Python package and vector storage file format for utilizing vector embeddi

Plasticity 1.5k Jan 02, 2023
Text editor on python tkinter to convert english text to other languages with the help of ployglot.

Transliterator Text Editor This is a simple transliteration program which is used to convert english word to phonetically matching word in another lan

Merin Rose Tom 1 Jan 16, 2022
🐍💯pySBD (Python Sentence Boundary Disambiguation) is a rule-based sentence boundary detection that works out-of-the-box.

pySBD: Python Sentence Boundary Disambiguation (SBD) pySBD - python Sentence Boundary Disambiguation (SBD) - is a rule-based sentence boundary detecti

Nipun Sadvilkar 549 Jan 06, 2023
中文无监督SimCSE Pytorch实现

A PyTorch implementation of unsupervised SimCSE SimCSE: Simple Contrastive Learning of Sentence Embeddings 1. 用法 无监督训练 python train_unsup.py ./data/ne

99 Dec 23, 2022
Fully featured implementation of Routing Transformer

Routing Transformer A fully featured implementation of Routing Transformer. The paper proposes using k-means to route similar queries / keys into the

Phil Wang 246 Jan 02, 2023
Natural language processing summarizer using 3 state of the art Transformer models: BERT, GPT2, and T5

NLP-Summarizer Natural language processing summarizer using 3 state of the art Transformer models: BERT, GPT2, and T5 This project aimed to provide in

Samuel Sharkey 1 Feb 07, 2022
REST API for sentence tokenization and embedding using Multilingual Universal Sentence Encoder.

What is MUSE? MUSE stands for Multilingual Universal Sentence Encoder - multilingual extension (16 languages) of Universal Sentence Encoder (USE). MUS

Dani El-Ayyass 47 Sep 05, 2022
This repository implements a brute-force spellchecker utilizing the Damerau-Levenshtein edit distance.

About spellchecker.py Implementing a highly-accurate, brute-force, and dynamically programmed spellchecking program that utilizes the Damerau-Levensht

Raihan Ahmed 1 Dec 11, 2021
Conditional probing: measuring usable information beyond a baseline

Conditional probing: measuring usable information beyond a baseline

John Hewitt 20 Dec 15, 2022