ResNEsts and DenseNEsts: Block-based DNN Models with Improved Representation Guarantees

Overview

ResNEsts and DenseNEsts: Block-based DNN Models with Improved Representation Guarantees

This repository is the official implementation of the empirical research presented in the supplementary material of the paper, ResNEsts and DenseNEsts: Block-based DNN Models with Improved Representation Guarantees.

Requirements

To install requirements:

pip install -r requirements.txt

Please install Python before running the above setup command. The code was tested on Python 3.8.10.

Create a folder to store all the models and results:

mkdir ckeckpoint

Training

To fully replicate the results below, train all the models by running the following two commands:

./train_cuda0.sh
./train_cuda1.sh

We used two separate scripts because we had two NVIDIA GPUs and we wanted to run two training processes for different models at the same time. If you have more GPUs or resources, you can submit multiple jobs and let them run in parallel.

To train a model with different seeds (initializations), run the command in the following form:

python main.py --data <dataset> --model <DNN_model> --mu <learning_rate>

The above command uses the default seed list. You can also specify your seeds like the following example:

python main.py --data CIFAR10 --model CIFAR10_BNResNEst_ResNet_110 --seed_list 8 9

Run this command to see how to customize your training or hyperparameters:

python main.py --help

Evaluation

To evaluate all trained models on benchmarks reported in the tables below, run:

./eval.sh

To evaluate a model, run:

python eval.py --data  <dataset> --model <DNN_model> --seed_list <seed>

Results

Image Classification on CIFAR-10

Architecture Standard ResNEst BN-ResNEst A-ResNEst
WRN-16-8 95.58% (11M) 94.47% (11M) 95.49% (11M) 95.29% (8.7M)
WRN-40-4 95.49% (9.0M) 94.64% (9.0M) 95.62% (9.0M) 95.48% (8.4M)
ResNet-110 94.33% (1.7M) 92.62% (1.7M) 94.47% (1.7M) 93.93% (1.7M)
ResNet-20 92.58% (0.27M) 90.98% (0.27M) 92.56% (0.27M) 92.47% (0.24M)

Image Classification on CIFAR-100

Architecture Standard ResNEst BN-ResNEst A-ResNEst
WRN-16-8 79.14% (11M) 75.42% (11M) 78.98% (11M) 78.74% (8.9M)
WRN-40-4 79.08% (9.0M) 75.16% (9.0M) 78.81% (9.0M) 78.69% (8.7M)
ResNet-110 74.08% (1.7M) 69.08% (1.7M) 74.24% (1.7M) 72.53% (1.9M)
ResNet-20 68.56% (0.28M) 64.73% (0.28M) 68.49% (0.28M) 68.16% (0.27M)

BibTeX

@inproceedings{chen2021resnests,
  title={{ResNEsts} and {DenseNEsts}: Block-based {DNN} Models with Improved Representation Guarantees},
  author={Chen, Kuan-Lin and Lee, Ching-Hua and Garudadri, Harinath and Rao, Bhaskar D.},
  booktitle={Advances in Neural Information Processing Systems (NeurIPS)},
  year={2021}
}
Owner
Kuan-Lin (Jason) Chen
Kuan-Lin (Jason) Chen
Pytorch Lightning code guideline for conferences

Deep learning project seed Use this seed to start new deep learning / ML projects. Built in setup.py Built in requirements Examples with MNIST Badges

Pytorch Lightning 1k Jan 02, 2023
pixelNeRF: Neural Radiance Fields from One or Few Images

pixelNeRF: Neural Radiance Fields from One or Few Images Alex Yu, Vickie Ye, Matthew Tancik, Angjoo Kanazawa UC Berkeley arXiv: http://arxiv.org/abs/2

Alex Yu 1k Jan 04, 2023
Official code for article "Expression is enough: Improving traffic signal control with advanced traffic state representation"

1 Introduction Official code for article "Expression is enough: Improving traffic signal control with advanced traffic state representation". The code s

Liang Zhang 10 Dec 10, 2022
Self-Supervised Learning with Data Augmentations Provably Isolates Content from Style

Self-Supervised Learning with Data Augmentations Provably Isolates Content from Style [NeurIPS 2021] Official code to reproduce the results and data p

Yash Sharma 27 Sep 19, 2022
Pytorch implementation of DeepMind's differentiable neural computer paper.

DNC pytorch This is a Pytorch implementation of DeepMind's Differentiable Neural Computer (DNC) architecture introduced in their recent Nature paper:

Yuanpu Xie 91 Nov 21, 2022
Google-drive-to-sqlite - Create a SQLite database containing metadata from Google Drive

google-drive-to-sqlite Create a SQLite database containing metadata from Google

Simon Willison 140 Dec 04, 2022
JudeasRx - graphical app for doing personalized causal medicine using the methods invented by Judea Pearl et al.

JudeasRX Instructions Read the references given in the Theory and Notation section below Fire up the Jupyter Notebook judeas-rx.ipynb The notebook dra

Robert R. Tucci 19 Nov 07, 2022
Research code for the paper "Variational Gibbs inference for statistical estimation from incomplete data".

Variational Gibbs inference (VGI) This repository contains the research code for Simkus, V., Rhodes, B., Gutmann, M. U., 2021. Variational Gibbs infer

Vaidotas Šimkus 1 Apr 08, 2022
Deep Learning Interviews book: Hundreds of fully solved job interview questions from a wide range of key topics in AI.

This book was written for you: an aspiring data scientist with a quantitative background, facing down the gauntlet of the interview process in an increasingly competitive field. For most of you, the

4.1k Dec 28, 2022
Large-scale language modeling tutorials with PyTorch

Large-scale language modeling tutorials with PyTorch 안녕하세요. 저는 TUNiB에서 머신러닝 엔지니어로 근무 중인 고현웅입니다. 이 자료는 대규모 언어모델 개발에 필요한 여러가지 기술들을 소개드리기 위해 마련하였으며 기본적으로

TUNiB 172 Dec 29, 2022
Beta Shapley: a Unified and Noise-reduced Data Valuation Framework for Machine Learning

Beta Shapley: a Unified and Noise-reduced Data Valuation Framework for Machine Learning This repository provides an implementation of the paper Beta S

Yongchan Kwon 28 Nov 10, 2022
Federated Deep Reinforcement Learning for the Distributed Control of NextG Wireless Networks.

FDRL-PC-Dyspan Federated Deep Reinforcement Learning for the Distributed Control of NextG Wireless Networks. This repository contains the entire code

Peyman Tehrani 17 Nov 18, 2022
Analysis of rationale selection in neural rationale models

Neural Rationale Interpretability Analysis We analyze the neural rationale models proposed by Lei et al. (2016) and Bastings et al. (2019), as impleme

Yiming Zheng 3 Aug 31, 2022
Supervised Classification from Text (P)

MSc-Thesis Module: Masters Research Thesis Language: Python Grade: 75 Title: An investigation of supervised classification of therapeutic process from

Matthew Laws 1 Nov 22, 2021
Official PaddlePaddle implementation of Paint Transformer

Paint Transformer: Feed Forward Neural Painting with Stroke Prediction [Paper] [Paddle Implementation] Update We have optimized the serial inference p

TianweiLin 284 Dec 31, 2022
This implements the learning and inference/proposal algorithm described in "Learning to Propose Objects, Krähenbühl and Koltun"

Learning to propose objects This implements the learning and inference/proposal algorithm described in "Learning to Propose Objects, Krähenbühl and Ko

Philipp Krähenbühl 90 Sep 10, 2021
Various operations like path tracking, counting, etc by using yolov5

Object-tracing-with-YOLOv5 Various operations like path tracking, counting, etc by using yolov5

Pawan Valluri 5 Nov 28, 2022
Geometry-Free View Synthesis: Transformers and no 3D Priors

Geometry-Free View Synthesis: Transformers and no 3D Priors Geometry-Free View Synthesis: Transformers and no 3D Priors Robin Rombach*, Patrick Esser*

CompVis Heidelberg 293 Dec 22, 2022
A super lightweight Lagrangian model for calculating millions of trajectories using ERA5 data

Easy-ERA5-Trck Easy-ERA5-Trck Galleries Install Usage Repository Structure Module Files Version iteration Easy-ERA5-Trck is a super lightweight Lagran

Zhenning Li 26 Nov 19, 2022
Addon and nodes for working with structural biology and molecular data in Blender.

Molecular Nodes 🧬 🔬 💻 Buy Me a Coffee to Keep Development Going! Join a Community of Blender SciVis People! What is Molecular Nodes? Molecular Node

Brady Johnston 456 Jan 08, 2023