A webcam-based 3x3x3 rubik's cube solver written in Python 3 and OpenCV.

Overview

Qbr

Qbr, pronounced as Cuber, is a webcam-based 3x3x3 rubik's cube solver written in Python 3 and OpenCV.

  • 🌈 Accurate color detection
  • 🔍 Accurate 3x3x3 rubik's cube detection
  • 🔠 Multilingual

Solve mode

solve mode

Calibrate mode

Isn't the default color detection working out for you? Use the calibrate mode to let Qbr be familiar with your cube's color scheme. If your room has proper lighting then this will give you a 99.9% guarantee that your colors will be detected properly.

Simply follow the on-screen instructions and you're ready to go.

calibrate mode calibrate mode success

Table of Contents

Introduction

The idea to create this came personally to mind when I started solving rubik's cubes. There were already so many professional programmers around the world who created robots that solve a rubik's cube in an ETA of 5 seconds and since 2016 in 1 second (link). That inspired me to create my own. I started using images only and eventually switched to webcam.

Installation

$ git clone --depth 1 https://github.com/kkoomen/qbr.git
$ cd qbr
$ python3 -m venv env
$ source ./env/bin/activate
$ pip3 install -r requirements.txt

Usage

Make sure you run source ./env/bin/activate every time you want to run the program.

Run Qbr:

$ ./src/qbr.py

This opens a webcam interface with the following things:

The first 9-sticker display (upper left corner)

This is preview mode. This will update immediately and display how Qbr has detected the colors.

The second 9-sticker display (upper left corner)

This is the snapshot state. When pressing SPACE it will create a snapshot in order to show you what state it has saved. You can press SPACE as many times as you'd like if it has been detected wrong.

Amount of sides scanned (bottom left corner)

The bottom left corner shows the amount of sides scanned. This is so you know if you've scanned in all sides before pressing ESC.

Interface language (top right corner)

In the top right corner you can see the current interface language. If you want to change the interface language you can press l to cycle through them. Continue to press l until you've found the right language.

Default language is set to English.

Available languages are:

  • English
  • Hungarian
  • Deutsch
  • French
  • Dutch
  • 简体中文

Full 2D cube state visualization (bottom right corner)

This visualization represents the whole cube state that is being saved and can be used to confirm whether the whole cube state has been scanned successfully.

Calibrate mode

The default color scheme contains the most prominent colors for white, yellow, red, orange, blue and green. If this can't detect your cube its colors properly then you can use calibrate mode.

Press c to go into calibrate mode in order to let Qbr be familiar with your cube's color scheme. Simply follow the on-screen instructions and you're ready to go.

Note: Your calibrated settings are automatically saved after you've calibrated your cube successfully. The next time you start Qbr it will automatically load it.

Tip: If you've scanned wrong, simple go out of calibrate mode by pressing c and go back into calibrate by pressing c again.

Getting the solution

Qbr checks if you have filled in all 6 sides when pressing ESC. If so, it'll calculate a solution if you've scanned it correctly.

You should now see a solution (or an error if you did it wrong).

How to scan your cube properly?

There is a strict way of scanning in the cube. Qbr will detect the side automatically, but the way you rotate the cube during the time you're scanning it is crucial in order for Qbr to properly calculate a solution. Make sure to follow the steps below properly:

  • Start off with the green side facing the camera and white on top, green being away from you. Start by scanning in the green side at this point.
  • After you've scanned in the green side, rotate the cube 90 or -90 degrees horizontally. It doesn't matter if you go clockwise or counter-clockwise. Continue to do this for the green, blue, red and orange sides until you are back at the green side.
  • You should now be in the same position like you started, having green facing the camera and white on top. Rotate the cube forward 90 degrees, resulting in green at the bottom and white facing the camera. Start scanning in the white side.
  • After you've scanned the white side, turn the cube back to how you started, having green in front again and white on top. Now rotate the cube backwards 90 degrees, resulting in green on top and yellow facing the camera. Now you can scan in the last yellow side.

If you've done the steps above correctly, you should have a solution from Qbr.

Keybindings

  • SPACE for saving the current state

  • ESC quit

  • c toggle calibrate mode

  • l switch interface language

Paramaters

You can use -n or --normalize to also output the solution in a "human-readable" format.

For example:

  • R will be: Turn the right side a quarter turn away from you.
  • F2 will be: Turn the front face 180 degrees.

Example runs

$ ./qbr.py
Starting position:
front: green
top: white

Moves: 20
Solution: U2 R D2 L2 F2 L U2 L F' U L U R2 B2 U' F2 D2 R2 D2 R2
$ ./qbr.py -n
Starting position:
front: green
top: white

Moves: 20
Solution: B2 U2 F' R U D' L' B' U L F U F2 R2 F2 D' F2 D R2 D2
1. Turn the back side 180 degrees.
2. Turn the top layer 180 degrees.
3. Turn the front side a quarter turn to the left.
4. Turn the right side a quarter turn away from you.
5. Turn the top layer a quarter turn to the left.
6. Turn the bottom layer a quarter turn to the left.
7. Turn the left side a quarter turn away from you.
8. Turn the back side a quarter turn to the right.
9. Turn the top layer a quarter turn to the left.
10. Turn the left side a quarter turn towards you.
11. Turn the front side a quarter turn to the right.
12. Turn the top layer a quarter turn to the left.
13. Turn the front side 180 degrees.
14. Turn the right side 180 degrees.
15. Turn the front side 180 degrees.
16. Turn the bottom layer a quarter turn to the left.
17. Turn the front side 180 degrees.
18. Turn the bottom layer a quarter turn to the right.
19. Turn the right side 180 degrees.
20. Turn the bottom layer 180 degrees.

Inspirational sources

Special thanks to HaginCodes for the main inspiration on how to improve my color detection.

https://github.com/HaginCodes/3x3x3-Rubiks-Cube-Solver

http://programmablebrick.blogspot.com/2017/02/rubiks-cube-tracker-using-opencv.html

https://gist.github.com/flyboy74/2cc3097f784c8c236a1a85278f08cddd

https://github.com/dwalton76/rubiks-color-resolver

License

Qbr is licensed under the MIT License.

Owner
Kim 金可明
Vim enthusiast; polyglot programmer; fullstack software engineer; QA engineer
Kim 金可明
It is a image ocr tool using the Tesseract-OCR engine with the pytesseract package and has a GUI.

OCR-Tool It is a image ocr tool made in Python using the Tesseract-OCR engine with the pytesseract package and has a GUI. This is my second ever pytho

Khant Htet Aung 4 Jul 11, 2022
Convolutional Recurrent Neural Network (CRNN) for image-based sequence recognition.

Convolutional Recurrent Neural Network This software implements the Convolutional Recurrent Neural Network (CRNN), a combination of CNN, RNN and CTC l

Baoguang Shi 2k Dec 31, 2022
Read Japanese manga inside browser with selectable text.

mokuro Read Japanese manga with selectable text inside a browser. See demo: https://kha-white.github.io/manga-demo mokuro_demo.mp4 Demo contains excer

Maciej Budyś 170 Dec 27, 2022
This project is basically to draw lines with your hand, using python, opencv, mediapipe.

Paint Opencv 📷 This project is basically to draw lines with your hand, using python, opencv, mediapipe. Screenshoots 📱 Tools ⚙️ Python Opencv Mediap

Williams Ismael Bobadilla Torres 3 Nov 17, 2021
A selectional auto-encoder approach for document image binarization

The code of this repository was used for the following publication. If you find this code useful please cite our paper: @article{Gallego2019, title =

Javier Gallego 89 Nov 18, 2022
A facial recognition device is a device that takes an image or a video of a human face and compares it to another image faces in a database.

A facial recognition device is a device that takes an image or a video of a human face and compares it to another image faces in a database. The structure, shape and proportions of the faces are comp

Pavankumar Khot 4 Mar 19, 2022
Aloception is a set of package for computer vision: aloscene, alodataset, alonet.

Aloception is a set of package for computer vision: aloscene, alodataset, alonet.

Visual Behavior 86 Dec 28, 2022
Self-supervised Equivariant Attention Mechanism for Weakly Supervised Semantic Segmentation, CVPR 2020 (Oral)

SEAM The implementation of Self-supervised Equivariant Attention Mechanism for Weakly Supervised Semantic Segmentaion. You can also download the repos

Hibercraft 459 Dec 26, 2022
Um simples projeto para fazer o reconhecimento do captcha usado pelo jogo bombcrypto

CaptchaSolver - LEIA ISSO 😓 Para iniciar o codigo: pip install -r requirements.txt python captcha_solver.py Se você deseja pegar ver o resultado das

Kawanderson 50 Mar 21, 2022
huoyijie 1.2k Dec 29, 2022
The virtual calculator will be above the live streaming from your camera

The virtual calculator is above the live streaming from my camera usb , the program first detect my hand and in each frame calculate the distance between two finger ,if the distance is lower than the

gasbaoui mohammed al amine 5 Jul 01, 2022
Implementation of EAST scene text detector in Keras

EAST: An Efficient and Accurate Scene Text Detector This is a Keras implementation of EAST based on a Tensorflow implementation made by argman. The or

Jan Zdenek 208 Nov 15, 2022
Framework for the Complete Gaze Tracking Pipeline

Framework for the Complete Gaze Tracking Pipeline The figure below shows a general representation of the camera-to-screen gaze tracking pipeline [1].

Pascal 20 Jan 06, 2023
Detect textlines in document images

Textline Detection Detect textlines in document images Introduction This tool performs border, region and textline detection from document image data

QURATOR-SPK 70 Jun 30, 2022
Roboflow makes managing, preprocessing, augmenting, and versioning datasets for computer vision seamless.

Roboflow makes managing, preprocessing, augmenting, and versioning datasets for computer vision seamless. This is the official Roboflow python package that interfaces with the Roboflow API.

Roboflow 52 Dec 23, 2022
A python programusing Tkinter graphics library to randomize questions and answers contained in text files

RaffleOfQuestions Um programa simples em python, utilizando a biblioteca gráfica Tkinter para randomizar perguntas e respostas contidas em arquivos de

Gabriel Ferreira Rodrigues 1 Dec 16, 2021
Tensorflow-based CNN+LSTM trained with CTC-loss for OCR

Overview This collection demonstrates how to construct and train a deep, bidirectional stacked LSTM using CNN features as input with CTC loss to perfo

Jerod Weinman 489 Dec 21, 2022
PyNeuro is designed to connect NeuroSky's MindWave EEG device to Python and provide Callback functionality to provide data to your application in real time.

PyNeuro PyNeuro is designed to connect NeuroSky's MindWave EEG device to Python and provide Callback functionality to provide data to your application

Zach Wang 45 Dec 30, 2022
SceneCollisionNet This repo contains the code for "Object Rearrangement Using Learned Implicit Collision Functions", an ICRA 2021 paper. For more info

SceneCollisionNet This repo contains the code for "Object Rearrangement Using Learned Implicit Collision Functions", an ICRA 2021 paper. For more info

NVIDIA Research Projects 31 Nov 22, 2022