This is the official code for Multi-attribute Pizza Generator (MPG2): Cross-domain Attribute Control with Conditional StyleGAN.
Paper | Demo |
---|
Setup Environment
can NOT run on CPU
conda create -n mpg python=3.8
conda activate mpg
git clone [email protected]:klory/food_project.git
cd food_project
pip install -r requirements.txt
pip install git+https://github.com/pytorch/[email protected]
Pretrained models
Pretrained models are stored in google-link, files are already in their desired locations, so following the same directory structure will minimize burdens to run the code inside the project (some files are not necessary for the current version of the project as of 2021-03-31).
Pizza10 dataset
Please follow MPG repository.
Ingredient classifier
Please follow MPG repository.
PizzaView dataset
Download PizzaView Dataset from google-link/data/Pizza3D
.
cd to datasets/
$ python pizza3d.py
View regressor
cd to view_regressor/
Train
$ CUDA_VISIBLE_DEVICES=0 python train.py --wandb=0
Validate
Download the pretrained model google-link/view_regressor/runs/pizza3d/1ab8hru7/00004999.ckpt
:
$ CUDA_VISIBLE_DEVICES=0 python val.py --ckpt_path=/runs/pizza3d/1ab8hru7/00004999.ckpt
MPG2
cd to mpg/
,
Train
$ CUDA_VISIBLE_DEVICES=0,1 python train.py --wandb=0
Validate
Download the pretrained model google-linkmpg/runs/30cupu9m/00260000.ckpt
.
cd to metrics/
:
CUDA_VISIBLE_DEVICES=0 python generate_samples.py --model=mpg
Metrics
cd to
metrics/
,
For more about FID and mAP, follow MPG repository.
FID (Frechet Inception Distance)
To compute FID, we need to first compute the statistics of the real images.
CUDA_VISIBLE_DEVICES=0 python calc_inception.py
then
$ CUDA_VISIBLE_DEVICES=0 python fid.py --model=mpg
I got FID=6.33
using the provided checkpoint.
mAE (mean Absolute Error) for view attributes
Computing mAE uses the pre-trained view regressor.
$ CUDA_VISIBLE_DEVICES=0 python mAE.py --model=mpg
Demo
cd to metrics/
.
CUDA_VISIBLE_DEVICES=0 streamlit run app.py