Distilled coarse part of LoFTR adapted for compatibility with TensorRT and embedded divices

Overview

Coarse LoFTR TRT

Google Colab demo notebook

This project provides a deep learning model for the Local Feature Matching for two images that can be used on the embedded devices like NVidia Jetson Nano 2GB with a reasonable accuracy and performance - 5 FPS. The algorithm is based on the coarse part of "LoFTR: Detector-Free Local Feature Matching with Transformers". But the model has a reduced number of ResNet and coarse transformer layers so there is the much lower memory consumption and the better performance. The required level of accuracy was achieved by applying the Knowledge distillation technique and training on the BlendedMVS dataset.

The code is based on the original LoFTR repository, but was adapted for compatibility with TensorRT technology, especially dependencies to einsum and einops were removed.

Model weights

Weights for the PyTorch model, ONNX model and TensorRT engine files are located in the weights folder.

Weights for original LoFTR coarse module can be downloaded using the original url that was provider by paper authors, now only the outdoor-ds file is supported.

Demo

There is a Demo application, that can be ran with the webcam.py script. There are following parameters:

  • --weights - The path to PyTorch model weights, for example 'weights/LoFTR_teacher.pt' or 'weights/outdoor_ds.ckpt'
  • --trt - The path to the TensorRT engine, for example 'weights/LoFTR_teacher.trt'
  • --onnx - The path to the ONNX model, for example 'weights/LoFTR_teacher.onnx'
  • --original - If specified the original LoFTR model will be used, can be used only with --weights parameter
  • --camid - OpenCV webcam video capture ID, usually 0 or 1, default 0
  • --device - Selects the runtime back-end CPU or CUDA, default is CUDA

Sample command line:

python3 webcam.py --trt=weights/LoFTR_teacher.trt --camid=0

Demo application shows a window with pair of images captured with a camera. Initially there will be the two same images. Then you can choose a view of interest and press the s button, the view will be remembered and will be visible as the left image. Then you can change the view and press the p button to make a snapshot of the feature matching result, the corresponding features will be marked with the same numbers at the two images. If you press the p button again then application will allow you to change the view and repeat the feature matching process. Also this application shows the real-time FPS counter so you can estimate the model performance.

Training

To repeat the training procedure you should use the low-res set of the BlendedMVS dataset. After download you can use the train.py script to run training process. There are following parameters for this script:

  • --path - Path to the dataset
  • --checkpoint_path - Where to store a log information and checkpoints, default value is 'weights'
  • --weights - Path to the LoFTR teacher model weights, default value is 'weights/outdoor_ds.ckpt'

Sample command line:

python3 train.py --path=/home/user/datasets/BlendedMVS --checkpoint_path=weights/experiment1/

Please use the train/settings.py script to configure the training process. Please notice that by default the following parameters are enabled:

self.batch_size = 32
self.batch_size_divider = 8  # Used for gradient accumulation
self.use_amp = True
self.epochs = 35
self.epoch_size = 5000

This set of parameters was chosen for training with the Nvidia GTX1060 GPU, which is the low level consumer level card. The use_amp parameter means the automatic mixed precision will be used to reduce the memory consumption and the training time. Also, the gradient accumulation technique is enabled with the batch_size_divider parameter, it means the actual batch size will be 32/8 but for larger batch size simulation the 8 batches will be averaged. Moreover, the actual size of the epoch is reduced with the epoch_size parameter, it means that on every epoch only 5000 dataset elements will be randomly picked from the whole dataset.

Paper

@misc{kolodiazhnyi2022local,
      title={Local Feature Matching with Transformers for low-end devices}, 
      author={Kyrylo Kolodiazhnyi},
      year={2022},
      eprint={2202.00770},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

LoFTR Paper:

@article{sun2021loftr,
  title={{LoFTR}: Detector-Free Local Feature Matching with Transformers},
  author={Sun, Jiaming and Shen, Zehong and Wang, Yuang and Bao, Hujun and Zhou, Xiaowei},
  journal={{CVPR}},
  year={2021}
}
Owner
Kirill
Kirill
🚩🚩🚩

My CTF Challenges 2021 AIS3 Pre-exam / MyFirstCTF Name Category Keywords Difficulty ⒸⓄⓋⒾⒹ-①⑨ (MyFirstCTF Only) Reverse Baby ★ Piano Reverse C#, .NET ★

6 Oct 28, 2021
learning and feeling SLAM together with hands-on-experiments

modern-slam-tutorial-python Learning and feeling SLAM together with hands-on-experiments 😀 😃 😆 Dependencies Most of the examples are based on GTSAM

Giseop Kim 59 Dec 22, 2022
Prototype for Baby Action Detection and Classification

Baby Action Detection Table of Contents About Install Run Predictions Demo About An attempt to harness the power of Deep Learning to come up with a so

Shreyas K 30 Dec 16, 2022
Code for the paper: Learning Adversarially Robust Representations via Worst-Case Mutual Information Maximization (https://arxiv.org/abs/2002.11798)

Representation Robustness Evaluations Our implementation is based on code from MadryLab's robustness package and Devon Hjelm's Deep InfoMax. For all t

Sicheng 19 Dec 07, 2022
A Neural Net Training Interface on TensorFlow, with focus on speed + flexibility

Tensorpack is a neural network training interface based on TensorFlow. Features: It's Yet Another TF high-level API, with speed, and flexibility built

Tensorpack 6.2k Jan 01, 2023
Python Algorithm Interview Book Review

파이썬 알고리즘 인터뷰 책 리뷰 리뷰 IT 대기업에 들어가고 싶은 목표가 있다. 내가 꿈꿔온 회사에서 일하는 사람들의 모습을 보면 멋있다고 생각이 들고 나의 목표에 대한 열망이 강해지는 것 같다. 미래의 핵심 사업 중 하나인 SW 부분을 이끌고 발전시키는 우리나라의 I

SharkBSJ 1 Dec 14, 2021
tensorflow implementation of 'YOLO : Real-Time Object Detection'

YOLO_tensorflow (Version 0.3, Last updated :2017.02.21) 1.Introduction This is tensorflow implementation of the YOLO:Real-Time Object Detection It can

Jinyoung Choi 1.7k Nov 21, 2022
JASS: Japanese-specific Sequence to Sequence Pre-training for Neural Machine Translation

JASS: Japanese-specific Sequence to Sequence Pre-training for Neural Machine Translation This the repository for this paper. Find extensions of this w

Zhuoyuan Mao 14 Oct 26, 2022
Twin-deep neural network for semi-supervised learning of materials properties

Deep Semi-Supervised Teacher-Student Material Synthesizability Prediction Citation: Semi-supervised teacher-student deep neural network for materials

MLEG 3 Dec 14, 2022
SOTA model in CIFAR10

A PyTorch Implementation of CIFAR Tricks 调研了CIFAR10数据集上各种trick,数据增强,正则化方法,并进行了实现。目前项目告一段落,如果有更好的想法,或者希望一起维护这个项目可以提issue或者在我的主页找到我的联系方式。 0. Requirement

PJDong 58 Dec 21, 2022
This repository contains answers of the Shopify Summer 2022 Data Science Intern Challenge.

Data-Science-Intern-Challenge This repository contains answers of the Shopify Summer 2022 Data Science Intern Challenge. Summer 2022 Data Science Inte

1 Jan 11, 2022
Leaf: Multiple-Choice Question Generation

Leaf: Multiple-Choice Question Generation Easy to use and understand multiple-choice question generation algorithm using T5 Transformers. The applicat

Kristiyan Vachev 62 Dec 20, 2022
DUE: End-to-End Document Understanding Benchmark

This is the repository that provide tools to download data, reproduce the baseline results and evaluation. What can you achieve with this guide Based

21 Dec 29, 2022
StackGAN: Text to Photo-realistic Image Synthesis with Stacked Generative Adversarial Networks

StackGAN Pytorch implementation Inception score evaluation StackGAN-v2-pytorch Tensorflow implementation for reproducing main results in the paper Sta

Han Zhang 1.8k Dec 21, 2022
Gif-caption - A straightforward GIF Captioner written in Python

Broksy's GIF Captioner Have you ever wanted to easily caption a GIF without havi

3 Apr 09, 2022
General Multi-label Image Classification with Transformers

General Multi-label Image Classification with Transformers Jack Lanchantin, Tianlu Wang, Vicente Ordóñez Román, Yanjun Qi Conference on Computer Visio

QData 154 Dec 21, 2022
MATLAB codes of the book "Digital Image Processing Fourth Edition" converted to Python

Digital Image Processing Python MATLAB codes of the book "Digital Image Processing Fourth Edition" converted to Python TO-DO: Refactor scripts, curren

Merve Noyan 24 Oct 16, 2022
[ICCV'21] Learning Conditional Knowledge Distillation for Degraded-Reference Image Quality Assessment

CKDN The official implementation of the ICCV2021 paper "Learning Conditional Knowledge Distillation for Degraded-Reference Image Quality Assessment" O

Multimedia Research 50 Dec 13, 2022
Breast-Cancer-Prediction

Breast-Cancer-Prediction Trying to predict whether the cancer is benign or malignant using REGRESSION MODELS in Python. Team Members NAME ROLL-NUMBER

Shyamdev Krishnan J 3 Feb 18, 2022
FedTorch is an open-source Python package for distributed and federated training of machine learning models using PyTorch distributed API

FedTorch is a generic repository for benchmarking different federated and distributed learning algorithms using PyTorch Distributed API.

Machine Learning and Optimization Lab @PennState 136 Dec 23, 2022