Joint Gaussian Graphical Model Estimation: A Survey

Overview

Joint Gaussian Graphical Model Estimation: A Survey

Test Models

  1. Fused graphical lasso [1]
  2. Group graphical lasso [1]
  3. Graphical lasso [1]
  4. Doubly joint spike-and-slab graphical lasso [2]

Installation

  1. Anaconda Environment package:
conda env create -f environment.yml
conda activate r_env2  #activate environment
  1. Install R packages
Rscript install_packages.R

Run Examples

Jupyter notebook

Saveral examples of data generation processes as well as sample codes are in the folder ./examples/jupyter_notebook

Plot ROC curve

Sample code for data generation process 1 (DGP1). The instruction for running DGP2_roc.r is the same.

cd examples/roc
### Generate simulated data, the result will be stored in ./data 
Rscript DGP1_roc.r DG [DATA DIMENSION]

### Select one of the refularization method FGL/GGL/GL. The result will be stored in ./results
Rscript DGP1_roc.r [ACTION: FGL/DGL/GL] [DATA DIMENSION]

###visualization
Rscript DGP1_roc_visualization.r
Other examples

Please check the structure tree below for more details.

Structure

├── examples
│   ├── jupyter_notebook
|   |   ├── simple_example_block.ipynb
|   |   ├── simple_example_scalefree.ipynb
|   |   ├── simple_example_ssjgl.ipynb
│   │   └── simple_example.ipynb
│   │
│   ├── roc # run & visualize ROC curve
|   |   ├── DGP1_roc_visualization.r #visualization|   ├── DGP1_roc.r # roc curve on scalefree network, common structures share same inverse convarince matrix (data generation process 1)
|   |   |                
|   |   ├── DGP2_roc_visualization.r #visualization
|   |   ├── DGP2_roc.r # roc curve on scalefree network, common structures have different inverse convarince matrices (data generation process 2)
|   |   |                    
|   |   ├── simple_roc_vis.r # visualization
|   |   └── simple_roc.r # roc curve on ramdom network
|   | 
|   ├── joint_demo.r # beautiful result on random network (Erdos-Renyi graph)            
│   ├── loss_graphsize_npAIC.r #fix p, vary n            
│   ├── loss_smallgraphsize.r #fix n, vary n             
│   ├── oos_scalefree.r # out-of-sample likelihood on scalefree network.              
│   ├── oos.r # out-of-sample likelihood on random network      
|   ├── scalefree_AIC.r # model selection on scalefree network using AIC, tune the trucation value                
|   ├── scalefree_BIC.r # model selection on scalefree network using BIC, tune the trucation value               
|   ├── simple_example_ar.r # example on AR network: model selction, fnr,fpr, Frobenious loss, etropy loss                      
|   └── simple_example_scalefree.r # example on scalefree network: model selction, fnr,fpr, Frobenious loss, etropy loss
|                          
├── R #source file
|   ├── admm.iters.R
|   ├── display.R
|   ├── eval.R
|   ├── gen_data.R
|   ├── gete.R
|   ├── JGL.R
|   ├── metrics.R
|   └── SSJGL.R
|   
├── environment.yml
├── install_packages.R
├── README.md
└── .gitignore

References

[1] Danaher, P., Wang, P., & Witten, D. M. (2014). The joint graphical lasso for inverse covariance estimation across multiple classes. Journal of the Royal Statistical Society. Series B, Statistical methodology, 76(2), 373.

[2] Zehang Richard Li, Tyler H. McCormick, and Samuel J. Clark. "Bayesian joint spike-and-slab graphical lasso". International Conference on Machine Learning, 2019.

Owner
Koyejo Lab
Koyejo Lab @ UIUC
Koyejo Lab
The official pytorch implemention of the CVPR paper "Temporal Modulation Network for Controllable Space-Time Video Super-Resolution".

This is the official PyTorch implementation of TMNet in the CVPR 2021 paper "Temporal Modulation Network for Controllable Space-Time VideoSuper-Resolu

Gang Xu 95 Oct 24, 2022
Implementation of parameterized soft-exponential activation function.

Soft-Exponential-Activation-Function: Implementation of parameterized soft-exponential activation function. In this implementation, the parameters are

Shuvrajeet Das 1 Feb 23, 2022
LIAO Shuiying 6 Dec 01, 2022
Pytorch implementation of few-shot semantic image synthesis

Few-shot Semantic Image Synthesis Using StyleGAN Prior Our method can synthesize photorealistic images from dense or sparse semantic annotations using

40 Sep 26, 2022
Posterior temperature optimized Bayesian models for inverse problems in medical imaging

Posterior temperature optimized Bayesian models for inverse problems in medical imaging Max-Heinrich Laves*, Malte Tölle*, Alexander Schlaefer, Sandy

Artificial Intelligence in Cardiovascular Medicine (AICM) 6 Sep 19, 2022
Code for: Imagine by Reasoning: A Reasoning-Based Implicit Semantic Data Augmentation for Long-Tailed Classification

Imagine by Reasoning: A Reasoning-Based Implicit Semantic Data Augmentation for Long-Tailed Classification Prerequisite PyTorch = 1.2.0 Python3 torch

16 Dec 14, 2022
“袋鼯麻麻——智能购物平台”能够精准地定位识别每一个商品

“袋鼯麻麻——智能购物平台”能够精准地定位识别每一个商品,并且能够返回完整地购物清单及顾客应付的实际商品总价格,极大地降低零售行业实际运营过程中巨大的人力成本,提升零售行业无人化、自动化、智能化水平。

thomas-yanxin 192 Jan 05, 2023
Generative vs Discriminative: Rethinking The Meta-Continual Learning (NeurIPS 2021)

Generative vs Discriminative: Rethinking The Meta-Continual Learning (NeurIPS 2021) In this repository we provide PyTorch implementations for GeMCL; a

4 Apr 15, 2022
This is a model made out of Neural Network specifically a Convolutional Neural Network model

This is a model made out of Neural Network specifically a Convolutional Neural Network model. This was done with a pre-built dataset from the tensorflow and keras packages. There are other alternativ

9 Oct 18, 2022
Old Photo Restoration (Official PyTorch Implementation)

Bringing Old Photo Back to Life (CVPR 2020 oral)

Microsoft 11.3k Dec 30, 2022
SMPLpix: Neural Avatars from 3D Human Models

subject0_validation_poses.mp4 Left: SMPL-X human mesh registered with SMPLify-X, middle: SMPLpix render, right: ground truth video. SMPLpix: Neural Av

Sergey Prokudin 292 Dec 30, 2022
Experimental code for paper: Generative Adversarial Networks as Variational Training of Energy Based Models

Experimental code for paper: Generative Adversarial Networks as Variational Training of Energy Based Models, under review at ICLR 2017 requirements: T

Shuangfei Zhai 18 Mar 05, 2022
Official code base for the poster "On the use of Cortical Magnification and Saccades as Biological Proxies for Data Augmentation" published in NeurIPS 2021 Workshop (SVRHM)

Self-Supervised Learning (SimCLR) with Biological Plausible Image Augmentations Official code base for the poster "On the use of Cortical Magnificatio

Binxu 8 Aug 17, 2022
🕺Full body detection and tracking

Pose-Detection 🤔 Overview Human pose estimation from video plays a critical role in various applications such as quantifying physical exercises, sign

Abbas Ataei 20 Nov 21, 2022
Fast Learning of MNL Model From General Partial Rankings with Application to Network Formation Modeling

Fast-Partial-Ranking-MNL This repo provides a PyTorch implementation for the CopulaGNN models as described in the following paper: Fast Learning of MN

Xingjian Zhang 3 Aug 19, 2022
Python and C++ implementation of "MarkerPose: Robust real-time planar target tracking for accurate stereo pose estimation". Accepted at LXCV @ CVPR 2021.

MarkerPose: Robust real-time planar target tracking for accurate stereo pose estimation This is a PyTorch and LibTorch implementation of MarkerPose: a

Jhacson Meza 47 Nov 18, 2022
Training Certifiably Robust Neural Networks with Efficient Local Lipschitz Bounds (Local-Lip)

Training Certifiably Robust Neural Networks with Efficient Local Lipschitz Bounds (Local-Lip) Introduction TL;DR: We propose an efficient and trainabl

17 Dec 01, 2022
FactSeg: Foreground Activation Driven Small Object Semantic Segmentation in Large-Scale Remote Sensing Imagery (TGRS)

FactSeg: Foreground Activation Driven Small Object Semantic Segmentation in Large-Scale Remote Sensing Imagery by Ailong Ma, Junjue Wang*, Yanfei Zhon

Kingdrone 43 Jan 05, 2023
Python tools for 3D face: 3DMM, Mesh processing(transform, camera, light, render), 3D face representations.

face3d: Python tools for processing 3D face Introduction This project implements some basic functions related to 3D faces. You can use this to process

Yao Feng 2.3k Dec 30, 2022
This repo is customed for VisDrone.

Object Detection for VisDrone(无人机航拍图像目标检测) My environment 1、Windows10 (Linux available) 2、tensorflow = 1.12.0 3、python3.6 (anaconda) 4、cv2 5、ensemble

53 Jul 17, 2022