Code for NeurIPS 2020 article "Contrastive learning of global and local features for medical image segmentation with limited annotations"

Overview

Contrastive learning of global and local features for medical image segmentation with limited annotations

The code is for the article "Contrastive learning of global and local features for medical image segmentation with limited annotations" which got accepted as an Oral presentation at NeurIPS 2020 (33rd international conference on Neural Information Processing Systems). With the proposed pre-training method using Contrastive learning, we get competitive segmentation performance with just 2 labeled training volumes compared to a benchmark that is trained with many labeled volumes.
https://arxiv.org/abs/2006.10511

Observations / Conclusions:

  1. For medical image segmentation, the proposed contrastive pre-training strategy incorporating domain knowledge present naturally across medical volumes yields better performance than baseline, other pre-training methods, semi-supervised, and data augmentation methods.
  2. Proposed local contrastive loss, an extension of global loss, provides an additional boost in performance by learning distinctive local-level representation to distinguish between neighbouring regions.
  3. The proposed pre-training strategy is complementary to semi-supervised and data augmentation methods. Combining them yields a further boost in accuracy.

Authors:
Krishna Chaitanya (email),
Ertunc Erdil,
Neerav Karani,
Ender Konukoglu.

Requirements:
Python 3.6.1,
Tensorflow 1.12.0,
rest of the requirements are mentioned in the "requirements.txt" file.

I) To clone the git repository.
git clone https://github.com/krishnabits001/domain_specific_dl.git

II) Install python, required packages and tensorflow.
Then, install python packages required using below command or the packages mentioned in the file.
pip install -r requirements.txt

To install tensorflow
pip install tensorflow-gpu=1.12.0

III) Dataset download.
To download the ACDC Cardiac dataset, check the website :
https://www.creatis.insa-lyon.fr/Challenge/acdc.

To download the Medical Decathlon Prostate dataset, check the website :
http://medicaldecathlon.com/

To download the MMWHS Cardiac dataset, check the website :
http://www.sdspeople.fudan.edu.cn/zhuangxiahai/0/mmwhs/

All the images were bias corrected using N4 algorithm with a threshold value of 0.001. For more details, refer to the "N4_bias_correction.py" file in scripts.
Image and label pairs are re-sampled (to chosen target resolution) and cropped/zero-padded to a fixed size using "create_cropped_imgs.py" file.

IV) Train the models.
Below commands are an example for ACDC dataset.
The models need to be trained sequentially as follows (check "train_model/pretrain_and_fine_tune_script.sh" script for commands)
Steps :

  1. Step 1: To pre-train the encoder with global loss by incorporating proposed domain knowledge when defining positive and negative pairs.
    cd train_model/
    python pretr_encoder_global_contrastive_loss.py --dataset=acdc --no_of_tr_imgs=tr52 --global_loss_exp_no=2 --n_parts=4 --temp_fac=0.1 --bt_size=12

  2. Step 2: After step 1, we pre-train the decoder with proposed local loss to aid segmentation task by learning distinctive local-level representations.
    python pretr_decoder_local_contrastive_loss.py --dataset=acdc --no_of_tr_imgs=tr52 --pretr_no_of_tr_imgs=tr52 --local_reg_size=1 --no_of_local_regions=13 --temp_fac=0.1 --global_loss_exp_no=2 --local_loss_exp_no=0 --no_of_decoder_blocks=3 --no_of_neg_local_regions=5 --bt_size=12

  3. Step 3: We use the pre-trained encoder and decoder weights as initialization and fine-tune to segmentation task using limited annotations.
    python ft_pretr_encoder_decoder_net_local_loss.py --dataset=acdc --pretr_no_of_tr_imgs=tr52 --local_reg_size=1 --no_of_local_regions=13 --temp_fac=0.1 --global_loss_exp_no=2 --local_loss_exp_no=0 --no_of_decoder_blocks=3 --no_of_neg_local_regions=5 --no_of_tr_imgs=tr1 --comb_tr_imgs=c1 --ver=0

To train the baseline with affine and random deformations & intensity transformations for comparison, use the below code file.
cd train_model/
python tr_baseline.py --dataset=acdc --no_of_tr_imgs=tr1 --comb_tr_imgs=c1 --ver=0

V) Config files contents.
One can modify the contents of the below 2 config files to run the required experiments.
experiment_init directory contains 2 files.
Example for ACDC dataset:

  1. init_acdc.py
    --> contains the config details like target resolution, image dimensions, data path where the dataset is stored and path to save the trained models.
  2. data_cfg_acdc.py
    --> contains an example of data config details where one can set the patient ids which they want to use as train, validation and test images.

Bibtex citation:

@article{chaitanya2020contrastive,
  title={Contrastive learning of global and local features for medical image segmentation with limited annotations},
  author={Chaitanya, Krishna and Erdil, Ertunc and Karani, Neerav and Konukoglu, Ender},
  journal={Advances in Neural Information Processing Systems},
  volume={33},
  year={2020}
}
Owner
Krishna Chaitanya
Doctoral Student, ETH Zurich
Krishna Chaitanya
A modification of Daniel Russell's notebook merged with Katherine Crowson's hq-skip-net changes

Edits made to this repo by Katherine Crowson I have added several features to this repository for use in creating higher quality generative art (featu

Paul Fishwick 10 May 07, 2022
This is the replication package for paper submission: Towards Training Reproducible Deep Learning Models.

This is the replication package for paper submission: Towards Training Reproducible Deep Learning Models.

0 Feb 02, 2022
A curated list of long-tailed recognition resources.

Awesome Long-tailed Recognition A curated list of long-tailed recognition and related resources. Please feel free to pull requests or open an issue to

Zhiwei ZHANG 542 Jan 01, 2023
Alignment Attention Fusion framework for Few-Shot Object Detection

AAF framework Framework generalities This repository contains the code of the AAF framework proposed in this paper. The main idea behind this work is

Pierre Le Jeune 20 Dec 16, 2022
Towers of Babel: Combining Images, Language, and 3D Geometry for Learning Multimodal Vision. ICCV 2021.

Towers of Babel: Combining Images, Language, and 3D Geometry for Learning Multimodal Vision Download links and PyTorch implementation of "Towers of Ba

Blakey Wu 40 Dec 14, 2022
GeneralOCR is open source Optical Character Recognition based on PyTorch.

Introduction GeneralOCR is open source Optical Character Recognition based on PyTorch. It makes a fidelity and useful tool to implement SOTA models on

57 Dec 29, 2022
Code & Models for 3DETR - an End-to-end transformer model for 3D object detection

3DETR: An End-to-End Transformer Model for 3D Object Detection PyTorch implementation and models for 3DETR. 3DETR (3D DEtection TRansformer) is a simp

Facebook Research 487 Dec 31, 2022
Unofficial PyTorch implementation of Google AI's VoiceFilter system

VoiceFilter Note from Seung-won (2020.10.25) Hi everyone! It's Seung-won from MINDs Lab, Inc. It's been a long time since I've released this open-sour

MINDs Lab 883 Jan 07, 2023
An optimization and data collection toolbox for convenient and fast prototyping of computationally expensive models.

An optimization and data collection toolbox for convenient and fast prototyping of computationally expensive models. Hyperactive: is very easy to lear

Simon Blanke 422 Jan 04, 2023
CVPR 2021 - Official code repository for the paper: On Self-Contact and Human Pose.

SMPLify-XMC This repo is part of our project: On Self-Contact and Human Pose. [Project Page] [Paper] [MPI Project Page] License Software Copyright Lic

Lea Müller 83 Dec 14, 2022
Libraries, tools and tasks created and used at DeepMind Robotics.

dm_robotics: Libraries, tools, and tasks created and used for Robotics research at DeepMind. Package overview Package Summary Transformations Rigid bo

DeepMind 273 Jan 06, 2023
A DCGAN to generate anime faces using custom mined dataset

Anime-Face-GAN-Keras A DCGAN to generate anime faces using custom dataset in Keras. Dataset The dataset is created by crawling anime database websites

Pavitrakumar P 190 Jan 03, 2023
Some toy examples of score matching algorithms written in PyTorch

toy_gradlogp This repo implements some toy examples of the following score matching algorithms in PyTorch: ssm-vr: sliced score matching with variance

Ending Hsiao 21 Dec 26, 2022
Repo for paper "Dynamic Placement of Rapidly Deployable Mobile Sensor Robots Using Machine Learning and Expected Value of Information"

Repo for paper "Dynamic Placement of Rapidly Deployable Mobile Sensor Robots Using Machine Learning and Expected Value of Information" Notes I probabl

Berkeley Expert System Technologies Lab 0 Jul 01, 2021
Official Pytorch implementation of the paper: "Locally Shifted Attention With Early Global Integration"

Locally-Shifted-Attention-With-Early-Global-Integration Pretrained models You can download all the models from here. Training Imagenet python -m torch

Shelly Sheynin 14 Apr 15, 2022
CSAW-M: An Ordinal Classification Dataset for Benchmarking Mammographic Masking of Cancer

CSAW-M This repository contains code for CSAW-M: An Ordinal Classification Dataset for Benchmarking Mammographic Masking of Cancer. Source code for tr

Yue Liu 7 Oct 11, 2022
내가 보려고 정리한 <프로그래밍 기초 Ⅰ> / organized for me

Programming-Basics 프로그래밍 기초 Ⅰ 아카이브 Do it! 점프 투 파이썬 주차 강의주제 비고 1주차 Syllabus 2주차 자료형 - 숫자형 3주차 자료형 - 문자열형 4주차 입력과 출력 5주차 제어문 - 조건문 if 6주차 제어문 - 반복문 whil

KIMMINSEO 1 Mar 07, 2022
Fuwa-http - The http client implementation for the fuwa eco-system

Fuwa HTTP The HTTP client implementation for the fuwa eco-system Example import

Fuwa 2 Feb 16, 2022
Keras implementation of Deeplab v3+ with pretrained weights

Keras implementation of Deeplabv3+ This repo is not longer maintained. I won't respond to issues but will merge PR DeepLab is a state-of-art deep lear

1.3k Dec 07, 2022