Leaf: Multiple-Choice Question Generation

Overview

Leaf: Multiple-Choice Question Generation

Easy to use and understand multiple-choice question generation algorithm using T5 Transformers. The application accepts a short passage of text and uses two fine-tuned T5 Transformer models to first generate multiple question-answer pairs corresponding to the given text, after which it uses them to generate distractors - additional options used to confuse the test taker.

question generation process

Originally inspired by a Bachelor's machine learning course (github link) and then continued as a topic for my Master's thesis at Sofia University, Bulgaria.

ECIR 2022 Demonstration paper

This work has been accepted as a demo paper for the ECIR 2022 conference.

Video demonstration: here

Live demo: coming soon

Paper: will be uploaded before the conference - 14th April 2022

Abstract: Testing with quiz questions has proven to be an effective strategy for better educational processes. However, manually creating quizzes is a tedious and time-consuming task. To address this challenge, we present Leaf, a system for generating multiple-choice questions from factual text. In addition to being very well suited for classroom settings, Leaf could be also used in an industrial setup, e.g., to facilitate onboarding and knowledge sharing, or as a component of chatbots, question answering systems, or Massive Open Online Courses (MOOCs).

Generating question and answer pairs

To generate the question-answer pairs we have fine-tuned a T5 transformer model from huggingface on the SQuAD1.1. dataset which is a reading comprehension dataset, consisting of questions posed by crowdworkers on a set of Wikipedia articles.

The model accepts the target answer and context as input:

'answer' + '
   
     + 'context' 

   

and outputs a question that answers the given answer for the corresponding text.

'answer' + '
   
     + 'question' 

   

To allow us to generate question-answer pairs without providing a target answer, we have trained the algorithm to do so when in place of the target answer the '[MASK]' token is passed.

'[MASK]' + '
   
     + 'context' 

   

The full training script can be found in the training directory or accessed directly in Google Colab.

Generating incorrect options (distractors)

To generate the distractors, another T5 transformer model has been fine-tuned. This time using the RACE dataset which consists of more than 28,000 passages and nearly 100,000 questions. The dataset is collected from English examinations in China, which are designed for middle school and high school students.

The model accepts the target answer, question and context as input:

'answer' + '
   
     + 'question' + 'context' 

   

and outputs 3 distractors separated by the ' ' token.

'distractor1' + '
   
     + 'distractor2' + '
    
      'distractor3' 

    
   

The full training script can be found in the training directory or accessed directly in Google Colab.

To extend the variety of distractors with simple words that are not so closely related to the context, we have also used sense2vec word embeddings in the cases where the T5 model does not good enough distractors.

Web application

To demonstrate the algorithm, a simple Angular web application has been created. It accepts the given paragraph along with the desired number of questions and outputs each generated question with the ability to redact them (shown below). The algorithm is exposing a simple REST API using flask which is consumed by the web app.

question generation process

The code for the web application is located in a separated repository here.

Installation guide

Creating a virtual environment (optional)

To avoid any conflicts with python packages from other projects, it is a good practice to create a virtual environment in which the packages will be installed. If you do not want to this you can skip the next commands and directly install the the requirements.txt file.

Create a virtual environment :

python -m venv venv

Enter the virtual environment:

Windows:

. .\venv\Scripts\activate

Linux or MacOS

source .\venv\Scripts\activate

Installing packages

pip install -r .\requirements.txt 

Downloading data

Question-answer model

Download the multitask-qg-ag model checkpoint and place it in the app/ml_models/question_generation/models/ directory.

Distractor generation

Download the race-distractors model checkpoint and place it in the app/ml_models/distractor_generation/models/ directory.

Download sense2vec, extract it and place the s2v_old folder and place it in the app/ml_models/sense2vec_distractor_generation/models/ directory.

Training on your own

The training scripts are available in the training directory. You can download the notebooks directly from there or open the Question-Answer Generation and Distractor Generation in Google Colab.

Owner
Kristiyan Vachev
Kristiyan Vachev
The first dataset on shadow generation for the foreground object in real-world scenes.

Object-Shadow-Generation-Dataset-DESOBA Object Shadow Generation is to deal with the shadow inconsistency between the foreground object and the backgr

BCMI 105 Dec 30, 2022
A Confidence-based Iterative Solver of Depths and Surface Normals for Deep Multi-view Stereo

idn-solver Paper | Project Page This repository contains the code release of our ICCV 2021 paper: A Confidence-based Iterative Solver of Depths and Su

zhaowang 43 Nov 17, 2022
A Repository of Community-Driven Natural Instructions

A Repository of Community-Driven Natural Instructions TLDR; this repository maintains a community effort to create a large collection of tasks and the

AI2 244 Jan 04, 2023
Multi-Objective Reinforced Active Learning

Multi-Objective Reinforced Active Learning Dependencies wandb tqdm pytorch = 1.7.0 numpy = 1.20.0 scipy = 1.1.0 pycolab == 1.2 Weights and Biases O

Markus Peschl 6 Nov 19, 2022
Provide partial dates and retain the date precision through processing

Prefix date parser This is a helper class to parse dates with varied degrees of precision. For example, a data source might state a date as 2001, 2001

Friedrich Lindenberg 13 Dec 14, 2022
Introducing neural networks to predict stock prices

IntroNeuralNetworks in Python: A Template Project IntroNeuralNetworks is a project that introduces neural networks and illustrates an example of how o

Vivek Palaniappan 637 Jan 04, 2023
Code and data (Incidents Dataset) for ECCV 2020 Paper "Detecting natural disasters, damage, and incidents in the wild".

Incidents Dataset See the following pages for more details: Project page: IncidentsDataset.csail.mit.edu. ECCV 2020 Paper "Detecting natural disasters

Ethan Weber 67 Dec 27, 2022
Implementation of the paper "Self-Promoted Prototype Refinement for Few-Shot Class-Incremental Learning"

Self-Promoted Prototype Refinement for Few-Shot Class-Incremental Learning This is the implementation of the paper "Self-Promoted Prototype Refinement

Kai Zhu 78 Dec 02, 2022
A simple python stock Predictor

Python Stock Predictor A simple python stock Predictor Demo Run Locally Clone the project git clone https://github.com/yashraj-n/stock-price-predict

Yashraj narke 5 Nov 29, 2021
Code for "LoRA: Low-Rank Adaptation of Large Language Models"

LoRA: Low-Rank Adaptation of Large Language Models This repo contains the implementation of LoRA in GPT-2 and steps to replicate the results in our re

Microsoft 394 Jan 08, 2023
Code to accompany the paper "Finding Bipartite Components in Hypergraphs", which is published in NeurIPS'21.

Finding Bipartite Components in Hypergraphs This repository contains code to accompany the paper "Finding Bipartite Components in Hypergraphs", publis

Peter Macgregor 5 May 06, 2022
The `rtdl` library + The official implementation of the paper

The `rtdl` library + The official implementation of the paper "Revisiting Deep Learning Models for Tabular Data"

Yandex Research 510 Dec 30, 2022
Official implementation of "Watermarking Images in Self-Supervised Latent-Spaces"

🔍 Watermarking Images in Self-Supervised Latent-Spaces PyTorch implementation and pretrained models for the paper. For details, see Watermarking Imag

Meta Research 32 Dec 13, 2022
Machine learning evaluation metrics, implemented in Python, R, Haskell, and MATLAB / Octave

Note: the current releases of this toolbox are a beta release, to test working with Haskell's, Python's, and R's code repositories. Metrics provides i

Ben Hamner 1.6k Dec 26, 2022
Semantic Segmentation with Pytorch-Lightning

This is a simple demo for performing semantic segmentation on the Kitti dataset using Pytorch-Lightning and optimizing the neural network by monitoring and comparing runs with Weights & Biases.

Boris Dayma 58 Nov 18, 2022
PyTorch implementation of U-TAE and PaPs for satellite image time series panoptic segmentation.

Panoptic Segmentation of Satellite Image Time Series with Convolutional Temporal Attention Networks (ICCV 2021) This repository is the official implem

71 Jan 04, 2023
This repo is duplication of jwyang/faster-rcnn.pytorch

Faster RCNN Pytorch This repo is duplication of jwyang/faster-rcnn.pytorch C/C++ code are removed and easier to study. Python 3.8.5 Ubuntu 20.04.1 LTS

Kim Jihwan 1 Jan 14, 2022
CIFS: Improving Adversarial Robustness of CNNs via Channel-wise Importance-based Feature Selection

CIFS This repository provides codes for CIFS (ICML 2021). CIFS: Improving Adversarial Robustness of CNNs via Channel-wise Importance-based Feature Sel

Hanshu YAN 19 Nov 12, 2022
Tooling for the Common Objects In 3D dataset.

CO3D: Common Objects In 3D This repository contains a set of tools for working with the Common Objects in 3D (CO3D) dataset. Download the dataset The

Facebook Research 724 Jan 06, 2023
Official Code for VideoLT: Large-scale Long-tailed Video Recognition (ICCV 2021)

Pytorch Code for VideoLT [Website][Paper] Updates [10/29/2021] Features uploaded to Google Drive, for access please send us an e-mail: zhangxing18 at

Skye 26 Sep 18, 2022