Learn Blockchains by Building One, A simple Blockchain in Python using Flask as a micro web framework.

Overview

Blockchain

forthebadge forthebadge forthebadge

Learn Blockchains by Building One Yourself

Installation

  1. Make sure Python 3.6+ is installed.
  2. Install Flask Web Framework.
  3. Clone this repository
    $ git clone https://github.com/krvaibhaw/blockchain.git
  1. Change Directory
    $ cd blockchain
  1. Install requirements
    $ pip install requirements.txt
  1. Run the server:
    $ python blockchain.py 
  1. Head to the Web brouser and visit
    http://127.0.0.1:5000/

Introduction

Blockchain is a specific type of database. It differs from a typical database in the way it stores information; blockchains store data in blocks that are then chained together. As new data comes in it is entered into a fresh block. Once the block is filled with data it is chained onto the previous block, which makes the data chained together in chronological order. Different types of information can be stored on a blockchain but the most common use so far has been as a ledger for transactions.

What is Blockchain?

A blockchain is essentially a digital ledger of transactions that is duplicated and distributed across the entire network of computer systems on the blockchain. It is a growing list of records, called blocks, that are linked together using cryptography. Each block contains a cryptographic hash of the previous block, a timestamp, and transaction data (generally represented as a Merkle tree). The timestamp proves that the transaction data existed when the block was published in order to get into its hash.

As blocks each contain information about the block previous to it (by cryptographic hash of the previous block), they form a chain, with each additional block reinforcing the ones before it. Therefore, blockchains are resistant to modification of their data because once recorded, the data in any given block cannot be altered retroactively without altering all subsequent blocks.

How does it works?

Blockchains are typically managed by a peer-to-peer network for use as a publicly distributed ledger, where nodes collectively adhere to a protocol to communicate and validate new blocks. Although blockchain records are not unalterable as forks are possible, blockchains may be considered secure by design and exemplify a distributed computing system with high Byzantine fault tolerance.

Why Blockchain?

  • Immutable: Blockchains are resistant to modification of their data because once recorded, the data in any given block cannot be altered retroactively without altering all subsequent blocks.

  • Decentralized: It doesn’t have any governing authority or a single person looking after the framework. Rather a group of nodes maintains the network making it decentralized. It means :

      -> Transparency
      -> User Control
      -> Less Prone to Breakdown
      -> Less chance of Failure.
      -> No Third-Party
    
  • Enhanced Security: If someone wants to corrupt the network, he/she would have to alter every data stored on every node in the network. There could be millions and millions of people, where everyone has the same copy of the ledger.

  • Distributed Ledgers: The ledger on the network is maintained by all other users on the system. This distributed computational power across the computers to ensure a better outcome. It ensures :

      -> No Malicious Changes
      -> Ownership of Verification
      -> Quick Response
      -> Managership
      -> No Extra Favors
    
  • Consensus: The architecture is cleverly designed, and consensus algorithms are at the core of this architecture. The consensus is a decision-making process for the group of nodes active on the network. The consensus is responsible for the network being trustless. Nodes might not trust each other, but they can trust the algorithms that run at the core of it. That’s why every decision on the network is a winning scenario for the blockchain.

  • True Traceability: With blockchain, the supply chain becomes more transparent than ever, as compared to traditional supply chain, where it is hard to trace items that can lead to multiple problems, including theft, counterfeit, and loss of goods.

Understanding the Program

Firstly, we defined the structure of our block, which contains, block index, timestamp of when it has been created, proof of work, along with previous hash i.e., the hash of previous block. In real case seanario along with these there are other contents such as a body or transaction list, etc.

    def createblock(self, proof, prevhash):
        
        # Defining the structure of our block
        block = {'index': len(self.chain) + 1,
                 'timestamp': str(datetime.datetime.now()),
                 'proof': proof,
                 'prevhash': prevhash}

        # Establishing a cryptographic link
        self.chain.append(block)
        return block

The genesis block is the first block in any blockchain-based protocol. It is the basis on which additional blocks are added to form a chain of blocks, hence the term blockchain. This block is sometimes referred to Block 0. Every block in a blockchain stores a reference to the previous block. In the case of Genesis Block, there is no previous block for reference.

    def __init__(self):
        
        self.chain = []
        
        # Creating the Genesis Block
        self.createblock(proof = 1, prevhash = "0")

Proof of Work(PoW) is the original consensus algorithm in a blockchain network. The algorithm is used to confirm the transaction and creates a new block to the chain. In this algorithm, minors (a group of people) compete against each other to complete the transaction on the network. The process of competing against each other is called mining. As soon as miners successfully created a valid block, he gets rewarded.

    def proofofwork(self, prevproof):
        newproof = 1
        checkproof = False

        # Defining crypto puzzle for the miners and iterating until able to mine it 
        while checkproof is False:
            op = hashlib.sha256(str(newproof**2 - prevproof**5).encode()).hexdigest()
            
            if op[:5] == "00000":
                checkproof = True
            else:
                newproof += 1
        
        return newproof

Chain validation is an important part of the blockchain, it is used to validate weather tha blockchain is valid or not. There are two checks performed.

First check, for each block check if the previous hash field is equal to the hash of the previous block i.e. to verify the cryptographic link.

Second check, to check if the proof of work for each block is valid according to problem defined in proofofwork() function i.e. to check if the correct block is mined or not.

    def ischainvalid(self, chain):
        prevblock = chain[0]   # Initilized to Genesis block
        blockindex = 1         # Initilized to Next block

        while blockindex < len(chain):

            # First Check : To verify the cryptographic link
            
            currentblock = chain[blockindex]
            if currentblock['prevhash'] != self.hash(prevblock):
                return False

            # Second Check : To check if the correct block is mined or not

            prevproof = prevblock['proof']
            currentproof = currentblock['proof']
            op = hashlib.sha256(str(currentproof**2 - prevproof**5).encode()).hexdigest()
            
            if op[:5] != "00000":
                return True

            prevblock = currentblock
            blockindex += 1

        return True

Feel free to follow along the code provided along with mentioned comments for
better understanding of the project, if any issues feel free to reach me out.

Contributing

Contributions are welcome!
Please feel free to submit a Pull Request.

Owner
Vaibhaw
A passionate thinker, techno freak, comic lover, a curious computer engineering student. Machine Learning, Artificial Intelligence, Linux, Web Development.
Vaibhaw
Python repo to create blockchain CSVs

staketaxcsv Python repo to create blockchain CSVs for Terra (LUNA), Solana (SOL), and Cosmos (ATOM). CSV codebase for stake.tax Community contribution

187 Dec 31, 2022
Highly decentralized and censorship-resistant way to store key data

Beacon coin Beacon coin is a Chia singelton coin that can store data that needs to be: always available censorship resistant versioned potentially imm

Sebastjan Trepca 24 Oct 04, 2022
JS Deobfuscation is a Python script that deobfuscates JS code and it's time saver for you

JS Deobfuscation is a Python script that deobfuscate JS code and it's time saver for you. Although it may not work with high degrees of obfuscation, it's a pretty nice tool to help you even if it's j

Quatrecentquatre 3 May 01, 2022
Aggregate real-time market data from cryptocurrency exchanges, filter, sort and format as TradingView watchlists.

tvbuddy Aggregate real-time market data from cryptocurrency exchanges, filter, sort and format as TradingView watchlists. Developed and tested on Pyth

Ossian Winter 2 Jan 07, 2022
This demo is an on-chain NFT auction using smart contracts on the Algorand blockchain.

Algorand Auction Demo This demo is an on-chain NFT auction using smart contracts on the Algorand blockchain. Usage The file auction/operations.py prov

1 Jan 27, 2022
Hasher Hash, Compare and Verify your files Translations

Hasher Hash, Compare and Verify your files Translations In order to translate Hasher to a language you must add a folder with the language abbreviatio

Jeyson Flores 14 Apr 01, 2022
Crypto-curriences analysis

Crypto_analysis Discription: simple streamlit(screener) app to make MMA and OSC analysis for cyrpto-currenices, and gives resaults for which coins are

13 Nov 01, 2021
Tool to compare smart contracts source code

smartdiffer Tool to compare smart contracts source code. Heavily relies on API of Etherscan and Diffchecker. Installation pip install smartdiffer API

Roman Moskalenko 23 Nov 16, 2022
Tracking (of choice) cryptocurrencies' daily prices and moving average.

Crypto-price-moving_average Tracking (of choice) cryptocurrencies' daily prices and moving average. About Alpha Vantage The Alpha Vantage library (htt

Thong Huynh 2 Jan 22, 2022
Audit of classmate's smart contract in blockchain seminar

Solidity-contract-audit Audit of classmate's smart contract in blockchain seminar Assignment: The task was to create a complete audit, including unit

smrza 0 Feb 04, 2022
Bitcoin Wallet Address Generator

Bitcoin Wallet Address Generator This is a simple Bitcoin non-deterministic wallet address generator coded in Python 3. It generates a Private Key in different formats (hex, wif and compressed wif) a

11 Dec 29, 2022
Accept Bitcoin donations on Twitch, and integrate them into your alerts!

The system in action Check out how seamlessly the project works! Support the project You can tip me with some sats here!

Fitti 27 Jan 08, 2023
Python Dash app that tracks whale activity in cryptocurrency markets.

Introduction Welcome! This is a Python-based Dash app meant to track whale activity in buy / sell walls on crypto-currency exchanges (presently just o

Paul Jeffries 549 Dec 25, 2022
Repository detailing Choice Coin's Creation and Documentation

Choice Coin V1 This Repository provides code and documentation detailing Choice Coin V1, a utility token built on the Algorand Blockchain. Choice Coin

Choice Coin 245 Dec 29, 2022
A really, really bad way to encrypt your text

deoxyencryptingnucleicacids A really, really bad way to encrypt your text. A general description of the scheme Encoding: The ascii plaintext is first

Sam Pinkerton 1 Nov 01, 2021
Simple python crypto bot to trade crypto on Binance based on RSI. Utilizing web sockets to get real-time prices

Py Crypto Bot Using Binance WebSocket API to get real-time price data for cryptocurrencies. Using the TA-Lib library to calculate the RSI and execute

Kennedy Ngugi Mwaura 15 Jan 04, 2023
Get the SHA256 hash of any file with this Python Script

Hashfile-SHA256 A SHA256 hash verifying script, written in python. Report Bug Table of Contents About The Project Built With Getting Started Prerequis

Ethan Gallucci 1 Nov 01, 2021
Given a string or a text file with plain text , returns his encryption using SHA256 method

Encryption using SHA256 Given a string or a .txt file with plain text. Returns his encryption using SHA256 method Requirements : pip install pyperclip

yuno 3 Jan 24, 2022
Tutela: an Ethereum and Tornado Cash Anonymity Tool

Tutela: an Ethereum and Tornado Cash Anonymity Tool The repo contains open-source code for Tutela, an anonymity tool for Ethereum and Tornado Cash use

TutelaLabs 96 Dec 05, 2022
A Python module to encrypt and decrypt data with AES-128 CFB mode.

cryptocfb A Python module to encrypt and decrypt data with AES-128 CFB mode. This module supports 8/64/128-bit CFB mode. It can encrypt and decrypt la

Quan Lin 2 Sep 23, 2022