I-BERT: Integer-only BERT Quantization

Overview

Screen Shot 2020-12-19 at 9 51 50 PM

I-BERT: Integer-only BERT Quantization

HuggingFace Implementation

I-BERT is also available in the master branch of HuggingFace! Visit the following links for the HuggingFace implementation.

Github Link: https://github.com/huggingface/transformers/tree/master/src/transformers/models/ibert

Model Links:

Installation & Requirements

You can find more detailed installation guides from the Fairseq repo: https://github.com/pytorch/fairseq

1. Fairseq Installation

Reference: Fairseq

  • PyTorch version >= 1.4.0
  • Python version >= 3.6
  • Currently, I-BERT only supports training on GPU
git clone https://github.com/kssteven418/I-BERT.git
cd I-BERT
pip install --editable ./

2. Download pre-trained RoBERTa models

Reference: Fairseq RoBERTa

Download pretrained RoBERTa models from the links and unzip them.

# In I-BERT (root) directory
mkdir models && cd models
wget {link}
tar -xvf roberta.{base|large}.tar.gz

3. Download GLUE datasets

Reference: Fairseq Finetuning on GLUE

First, download the data from the GLUE website. Make sure to download the dataset in I-BERT (root) directory.

# In I-BERT (root) directory
wget https://gist.githubusercontent.com/W4ngatang/60c2bdb54d156a41194446737ce03e2e/raw/17b8dd0d724281ed7c3b2aeeda662b92809aadd5/download_glue_data.py
python download_glue_data.py --data_dir glue_data --tasks all

Then, preprocess the data.

# In I-BERT (root) directory
./examples/roberta/preprocess_GLUE_tasks.sh glue_data {task_name}

task_name can be one of the following: {ALL, QQP, MNLI, QNLI, MRPC, RTE, STS-B, SST-2, CoLA} . ALL will preprocess all the tasks. If the command is run propely, preprocessed datasets will be stored in I-BERT/{task_name}-bin

Now, you have the models and the datasets ready, so you are ready to run I-BERT!

Task-specific Model Finetuning

Before quantizing the model, you first have to finetune the pre-trained models to a specific downstream task. Although you can finetune the model from the original Fairseq repo, we provide ibert-base branch where you can train non-quantized models without having to install the original Fairseq. This branch is identical to the master branch of the original Fairseq repo, except for some loggings and run scripts that are irrelevant to the functionality. If you already have finetuned models, you can skip this part.

Run the following commands to fetch and move to the ibert-base branch:

# In I-BERT (root) directory
git fetch
git checkout -t origin/ibert-base

Then, run the script:

# In I-BERT (root) directory
# CUDA_VISIBLE_DEVICES={device} python run.py --arch {roberta_base|roberta_large} --task {task_name}
CUDA_VISIBLE_DEVICES=0 python run.py --arch roberta_base --task MRPC

Checkpoints and validation logs will be stored at ./outputs directory. You can change this output location by adding the option --output-dir OUTPUT_DIR. The exact output location will look something like: ./outputs/none/MRPC-base/wd0.1_ad0.1_d0.1_lr2e-5/1219-101427_ckpt/checkpoint_best.pt. By default, models are trained according to the task-specific hyperparameters specified in Fairseq Finetuning on GLUE. However, you can also specify the hyperparameters with the options (use the option -h for more details).

Quantiation & Quantization-Aware-Finetuning

Now, we come back to ibert branch for quantization.

git checkout ibert

And then run the script. This will first quantize the model and do quantization-aware-finetuning with the learning rate that you specify with the option --lr {lr}.

# In I-BERT (root) directory
# CUDA_VISIBLE_DEVICES={device} python run.py --arch {roberta_base|roberta_large} --task {task_name} \
# --restore-file {ckpt_path} --lr {lr}
CUDA_VISIBLE_DEVICES=0 python run.py --arch roberta_base --task MRPC --restore-file ckpt-best.pt --lr 1e-6

NOTE: Our work is still on progress. Currently, all integer operations are executed with floating point.

Unofficial implementation of MUSIQ (Multi-Scale Image Quality Transformer)

MUSIQ: Multi-Scale Image Quality Transformer Unofficial pytorch implementation of the paper "MUSIQ: Multi-Scale Image Quality Transformer" (paper link

41 Jan 02, 2023
Fast, differentiable sorting and ranking in PyTorch

Torchsort Fast, differentiable sorting and ranking in PyTorch. Pure PyTorch implementation of Fast Differentiable Sorting and Ranking (Blondel et al.)

Teddy Koker 655 Jan 04, 2023
A Pytorch Implementation of Source Data-free Domain Adaptation for a Faster R-CNN

A Pytorch Implementation of Source Data-free Domain Adaptation for a Faster R-CNN Please follow Faster R-CNN and DAF to complete the environment confi

2 Jan 12, 2022
Ian Covert 130 Jan 01, 2023
MODALS: Modality-agnostic Automated Data Augmentation in the Latent Space

Update (20 Jan 2020): MODALS on text data is avialable MODALS MODALS: Modality-agnostic Automated Data Augmentation in the Latent Space Table of Conte

38 Dec 15, 2022
PyTorch deep learning projects made easy.

PyTorch Template Project PyTorch deep learning project made easy. PyTorch Template Project Requirements Features Folder Structure Usage Config file fo

Victor Huang 3.8k Jan 01, 2023
StyleGAN2 - Official TensorFlow Implementation

StyleGAN2 - Official TensorFlow Implementation

NVIDIA Research Projects 10.1k Dec 28, 2022
Learned model to estimate number of distinct values (NDV) of a population using a small sample.

Learned NDV estimator Learned model to estimate number of distinct values (NDV) of a population using a small sample. The model approximates the maxim

2 Nov 21, 2022
Offical implementation for "Trash or Treasure? An Interactive Dual-Stream Strategy for Single Image Reflection Separation".

Trash or Treasure? An Interactive Dual-Stream Strategy for Single Image Reflection Separation (NeurIPS 2021) by Qiming Hu, Xiaojie Guo. Dependencies P

Qiming Hu 31 Dec 20, 2022
Springer Link Download Module for Python

♞ pupalink A simple Python module to search and download books from SpringerLink. 🧪 This project is still in an early stage of development. Expect br

Pupa Corp. 18 Nov 21, 2022
Differentiable molecular simulation of proteins with a coarse-grained potential

Differentiable molecular simulation of proteins with a coarse-grained potential This repository contains the learned potential, simulation scripts and

UCL Bioinformatics Group 44 Dec 10, 2022
Multivariate Boosted TRee

Multivariate Boosted TRee What is MBTR MBTR is a python package for multivariate boosted tree regressors trained in parameter space. The package can h

SUPSI-DACD-ISAAC 61 Dec 19, 2022
The official implementation of CVPR 2021 Paper: Improving Weakly Supervised Visual Grounding by Contrastive Knowledge Distillation.

Improving Weakly Supervised Visual Grounding by Contrastive Knowledge Distillation This repository is the official implementation of CVPR 2021 paper:

9 Nov 14, 2022
Kaggle G2Net Gravitational Wave Detection : 2nd place solution

Kaggle G2Net Gravitational Wave Detection : 2nd place solution

Hiroshechka Y 33 Dec 26, 2022
MMFlow is an open source optical flow toolbox based on PyTorch

Documentation: https://mmflow.readthedocs.io/ Introduction English | 简体中文 MMFlow is an open source optical flow toolbox based on PyTorch. It is a part

OpenMMLab 688 Jan 06, 2023
A tool to estimate time varying instantaneous reproduction number during epidemics

EpiEstim A tool to estimate time varying instantaneous reproduction number during epidemics. It is described in the following paper: @article{Cori2013

MRC Centre for Global Infectious Disease Analysis 78 Dec 19, 2022
WHENet - ONNX, OpenVINO, TFLite, TensorRT, EdgeTPU, CoreML, TFJS, YOLOv4/YOLOv4-tiny-3L

HeadPoseEstimation-WHENet-yolov4-onnx-openvino ONNX, OpenVINO, TFLite, TensorRT, EdgeTPU, CoreML, TFJS, YOLOv4/YOLOv4-tiny-3L 1. Usage $ git clone htt

Katsuya Hyodo 49 Sep 21, 2022
Yolov5 deepsort inference,使用YOLOv5+Deepsort实现车辆行人追踪和计数,代码封装成一个Detector类,更容易嵌入到自己的项目中

使用YOLOv5+Deepsort实现车辆行人追踪和计数,代码封装成一个Detector类,更容易嵌入到自己的项目中。

813 Dec 31, 2022
Self-Supervised Pre-Training for Transformer-Based Person Re-Identification

Self-Supervised Pre-Training for Transformer-Based Person Re-Identification [pdf] The official repository for Self-Supervised Pre-Training for Transfo

Hao Luo 116 Jan 04, 2023
TJU Deep Learning & Neural Network

Deep_Learning & Neural_Network_Lab 实验环境 Python 3.9 Anaconda3(官网下载或清华镜像都行) PyTorch 1.10.1(安装代码如下) conda install pytorch torchvision torchaudio cudatool

St3ve Lee 1 Jan 19, 2022