Fast, accurate and reliable software for algebraic CT reconstruction

Related tags

Deep LearningKCT_cbct
Overview

KCT CBCT

Fast, accurate and reliable software for algebraic CT reconstruction.

This set of software tools includes OpenCL implementation of modern CT and CBCT reconstruction algorithms including unpublished algorithms by the author. Initially, the focus was on CT reconstruction using Krylov LSQR and CGLS methods. Gradually, other widely used methods such as OS-SIRT are added. Initially, the software was based on the idea of a projector that directly computes the projections of individual voxels onto pixels using the volume integrals of the voxel cuts. The author intends to publish a paper on this cutting voxel projector (CVP) in late 2021. However, the package also includes implementations of the TT projector and the Siddon projector the DD and TR projectors will be implemented in the near future. The code for the CVP projector is optimized using OpenCL local memory and is probably one of the fastest projector implementations ever for algebraic reconstruction.

The package has been tested and is compatible with the AMD Radeon VII Vega 20 GPU and NVIDIA GeForce RTX 2080 Ti GPU. Some routines have been optimized specifically for these GPU architectures. OpenCL code conforms to the OpenCL 1.2 specification and the implementation uses C++ wrappers from OpenCL 1.2. OpenCL 2.0 is not supported due to lack of support from NVidia.

Algorithms

Cutting voxel projector yet to be published.

LSQR algorithm was implemented according to https://doi.org/10.1002/nla.611

CGLS algorithm with delayed residual computation as described in the proceedings of Fully3D conference 2021 Software Implementation of the Krylov Methods Based Reconstruction for the 3D Cone Beam CT Operator Poster and extendend absract can be found in the publications directory

Repositories

The KCT package is hosted on Bitbucket and GitHub

GitHub public repository

git clone https://github.com/kulvait/KCT_cbct.git

Bitbucket public repository

git clone https://bitbucket.org/kulvait/kct_cbct.git

Submodules

Submodules lives in the submodules directory. To clone project including submodules one have to use the following commands

git submodule init
git submodule update

or use the following command when cloning repository

git clone --recurse-submodules

CTIOL

Input output routines for asynchronous thread safe reading/writing CT data. The DEN format read/write is implemented.

CTMAL

Mathematic/Algebraic algorithms for supporting CT data manipulation.

Plog logger

Logger Plog is used for logging. It is licensed under the Mozilla Public License Version 2.0.

CLI11

Comand line parser CLI11. It is licensed under 3 Clause BSD License.

Catch2

Testing framework. Licensed under Boost Software License 1.0.

CTPL

Threadpool library.

Documentation

Documentation is generated using doxygen and lives in doc directory. First the config file for doxygen was prepared runing doxygen -g. Doc files and this file can be written using Markdown syntax, JAVADOC_AUTOBRIEF is set to yes to treat first line of the doc comment as a brief description, comments are of the format

/**Brief description.
*
*Long description
*thay might span multiple lines.
*/

.

Licensing

When there is no other licensing and/or copyright information in the source files of this project, the following apply for the source files in the directories include and src and for CMakeLists.txt file:

Copyright (C) 2018-2021 Vojtěch Kulvait

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, version 3 of the License.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program.  If not, see <https://www.gnu.org/licenses/>.

This licensing applies to the direct source files in the directories include and src of this project and not for submodules.

Owner
Vojtěch Kulvait
2018-2021 PostDoc at Magdeburg University, CT reconstruction
Vojtěch Kulvait
Code for Discriminative Sounding Objects Localization (NeurIPS 2020)

Discriminative Sounding Objects Localization Code for our NeurIPS 2020 paper Discriminative Sounding Objects Localization via Self-supervised Audiovis

51 Dec 11, 2022
HyperCube: Implicit Field Representations of Voxelized 3D Models

HyperCube: Implicit Field Representations of Voxelized 3D Models Authors: Magdalena Proszewska, Marcin Mazur, Tomasz Trzcinski, Przemysław Spurek [Pap

Magdalena Proszewska 3 Mar 09, 2022
wmctrl ported to Python Ctypes

work in progress wmctrl is a command that can be used to interact with an X Window manager that is compatible with the EWMH/NetWM specification. wmctr

Iyad Ahmed 22 Dec 31, 2022
Pyramid R-CNN: Towards Better Performance and Adaptability for 3D Object Detection

Pyramid R-CNN: Towards Better Performance and Adaptability for 3D Object Detection

61 Jan 07, 2023
Dataset VSD4K includes 6 popular categories: game, sport, dance, vlog, interview and city.

CaFM-pytorch ICCV ACCEPT Introduction of dataset VSD4K Our dataset VSD4K includes 6 popular categories: game, sport, dance, vlog, interview and city.

96 Jul 05, 2022
A pytorch-based real-time segmentation model for autonomous driving

CFPNet: Channel-Wise Feature Pyramid for Real-Time Semantic Segmentation This project contains the Pytorch implementation for the proposed CFPNet: pap

342 Dec 22, 2022
Contrastive Language-Image Pretraining

CLIP [Blog] [Paper] [Model Card] [Colab] CLIP (Contrastive Language-Image Pre-Training) is a neural network trained on a variety of (image, text) pair

OpenAI 11.5k Jan 08, 2023
Ppq - A powerful offline neural network quantization tool with custimized IR

PPL Quantization Tool(PPL 量化工具) PPL Quantization Tool (PPQ) is a powerful offlin

605 Jan 03, 2023
Crawl & visualize ICLR papers and reviews

Crawl and Visualize ICLR 2022 OpenReview Data Descriptions This Jupyter Notebook contains the data crawled from ICLR 2022 OpenReview webpages and thei

Federico Berto 75 Dec 05, 2022
A object detecting neural network powered by the yolo architecture and leveraging the PyTorch framework and associated libraries.

Yolo-Powered-Detector A object detecting neural network powered by the yolo architecture and leveraging the PyTorch framework and associated libraries

Luke Wilson 1 Dec 03, 2021
Gradient-free global optimization algorithm for multidimensional functions based on the low rank tensor train format

ttopt Description Gradient-free global optimization algorithm for multidimensional functions based on the low rank tensor train (TT) format and maximu

5 May 23, 2022
This repository focus on Image Captioning & Video Captioning & Seq-to-Seq Learning & NLP

Awesome-Visual-Captioning Table of Contents ACL-2021 CVPR-2021 AAAI-2021 ACMMM-2020 NeurIPS-2020 ECCV-2020 CVPR-2020 ACL-2020 AAAI-2020 ACL-2019 NeurI

Ziqi Zhang 362 Jan 03, 2023
Efficient and Scalable Physics-Informed Deep Learning and Scientific Machine Learning on top of Tensorflow for multi-worker distributed computing

Notice: Support for Python 3.6 will be dropped in v.0.2.1, please plan accordingly! Efficient and Scalable Physics-Informed Deep Learning Collocation-

tensordiffeq 74 Dec 09, 2022
Official Implementation of Few-shot Visual Relationship Co-localization

VRC Official implementation of the Few-shot Visual Relationship Co-localization (ICCV 2021) paper project page | paper Requirements Use python = 3.8.

22 Oct 13, 2022
Segmentation in Style: Unsupervised Semantic Image Segmentation with Stylegan and CLIP

Segmentation in Style: Unsupervised Semantic Image Segmentation with Stylegan and CLIP Abstract: We introduce a method that allows to automatically se

Daniil Pakhomov 134 Dec 19, 2022
190 Jan 03, 2023
"3D Human Texture Estimation from a Single Image with Transformers", ICCV 2021

Texformer: 3D Human Texture Estimation from a Single Image with Transformers This is the official implementation of "3D Human Texture Estimation from

XiangyuXu 193 Dec 05, 2022
Custom implementation of Corrleation Module

Pytorch Correlation module this is a custom C++/Cuda implementation of Correlation module, used e.g. in FlowNetC This tutorial was used as a basis for

Clément Pinard 361 Dec 12, 2022
Lepard: Learning Partial point cloud matching in Rigid and Deformable scenes

Lepard: Learning Partial point cloud matching in Rigid and Deformable scenes [Paper] Method overview 4DMatch Benchmark 4DMatch is a benchmark for matc

103 Jan 06, 2023
i-SpaSP: Structured Neural Pruning via Sparse Signal Recovery

i-SpaSP: Structured Neural Pruning via Sparse Signal Recovery This is a public code repository for the publication: i-SpaSP: Structured Neural Pruning

Cameron Ronald Wolfe 5 Nov 04, 2022