Ensemble Visual-Inertial Odometry (EnVIO)

Related tags

Deep Learningenvio
Overview

Ensemble Visual-Inertial Odometry (EnVIO)

Authors : Jae Hyung Jung, Yeongkwon Choe, and Chan Gook Park

1. Overview

This is a ROS package of Ensemble Visual-Inertial Odometry (EnVIO) written in C++. It features a photometric (direct) measurement model and stochastic linearization that are implemented by iterated extended Kalman filter fully built on the matrix Lie group. EnVIO takes time-synced stereo images and IMU readings as input and outputs the current vehicle pose and feature depths at the current camera frame with their estimated uncertainties.

Video Label

2. Build

  • This package was tested on Ubuntu 16.04 (ROS Kinetic) with Eigen 3.3.7 for matrix computation and OpenCV 3.3.1 for image processing in C++11.
  • There are no additional dependencies, we hope this package can be built without any difficulties in different environments.
  • We use the catkin build system :
cd catkin_ws
catkin_make

3. Run (EuRoC example)

  • Configuration and launch files are prepared in config/euroc/camchain-imucam-euroc.yaml and launch/nesl_envio_euroc.launch.
  • The configuration files are output by Kalibr toolbox.
  • Filter and image processing parameters are set from the launch file.
  • Please note that our filter implementation requires static state at the beginning to initialize tilt angles, velocity and gyroscope biases. The temporal window for this process can be set by num_init_samples in the launch file.
  • As default our package outputs est_out.txt that includes estimated states.
roslaunch ensemble_vio nesl_envio_euroc.launch
roslaunch ensemble_vio nesl_envio_rviz.launch
rosbag play rosbag.bag

4. Run your own device

  • Our implementation assumes that stereo camera is hardware-synced and the spatio-temporal parameters for cameras and IMU are calibrated as it is a critical step in sensor fusion.
  • You can calibrate your visual-inertial sensor using Kalibr toolbox and place the output file in config.
  • The input ROS topics and filter parameters are set in launch.
  • With low cost IMUs as in EuRoC sensor suite, you can use the default parameters of EuRoC example file.

5. Citation

If you feel this work helpful to your academic research, we kindly ask you to cite our paper :

@article{EnVIO_TRO,
  title={Photometric Visual-Inertial Navigation with Uncertainty-Aware Ensembles},
  author={Jung, Jae Hyung and Choe, Yeongkwon and Park, Chan Gook},
  journal={IEEE Transactions on Robotics},
  year={2022},
  publisher={IEEE}
}

6. Acknowledgements

This research was supported in part by Unmanned Vehicle Advanced Research Center funded by the Ministry of Science and ICT, the Republic of Korea and in part by Hyundai NGV Company.

7. License

Our source code is released under GPLv3 license. If there are any issues in our source code please contact to the author ([email protected]).

Owner
Jae Hyung Jung
Jae Hyung Jung
Simple transformer model for CIFAR10

CIFAR-Transformer Simple transformer model for CIFAR10. Reference: https://www.tensorflow.org/text/tutorials/transformer https://github.com/huggingfac

9 Nov 07, 2022
Implemented fully documented Particle Swarm Optimization algorithm (basic model with few advanced features) using Python programming language

Implemented fully documented Particle Swarm Optimization (PSO) algorithm in Python which includes a basic model along with few advanced features such as updating inertia weight, cognitive, social lea

9 Nov 29, 2022
Self Driving RC Car Code

Derp Learning Derp Learning is a Python package that collects data, trains models, and then controls an RC car for track racing. Hardware You will nee

Not Karol 39 Dec 07, 2022
Official implementation of "GS-WGAN: A Gradient-Sanitized Approach for Learning Differentially Private Generators" (NeurIPS 2020)

GS-WGAN This repository contains the implementation for GS-WGAN: A Gradient-Sanitized Approach for Learning Differentially Private Generators (NeurIPS

46 Nov 09, 2022
这是一个yolo3-tf2的源码,可以用于训练自己的模型。

YOLOV3:You Only Look Once目标检测模型在Tensorflow2当中的实现 目录 性能情况 Performance 所需环境 Environment 文件下载 Download 训练步骤 How2train 预测步骤 How2predict 评估步骤 How2eval 参考资料

Bubbliiiing 68 Dec 21, 2022
Official PyTorch code for Hierarchical Conditional Flow: A Unified Framework for Image Super-Resolution and Image Rescaling (HCFlow, ICCV2021)

Hierarchical Conditional Flow: A Unified Framework for Image Super-Resolution and Image Rescaling (HCFlow, ICCV2021) This repository is the official P

Jingyun Liang 159 Dec 30, 2022
CLNTM - Contrastive Learning for Neural Topic Model

Contrastive Learning for Neural Topic Model This repository contains the impleme

Thong Thanh Nguyen 25 Nov 24, 2022
4K videos with annotated masks in our ICCV2021 paper 'Internal Video Inpainting by Implicit Long-range Propagation'.

Annotated 4K Videos paper | project website | code | demo video 4K videos with annotated object masks in our ICCV2021 paper: Internal Video Inpainting

Tengfei Wang 21 Nov 05, 2022
Just Go with the Flow: Self-Supervised Scene Flow Estimation

Just Go with the Flow: Self-Supervised Scene Flow Estimation Code release for the paper Just Go with the Flow: Self-Supervised Scene Flow Estimation,

Himangi Mittal 50 Nov 22, 2022
This program uses trial auth token of Azure Cognitive Services to do speech synthesis for you.

🗣️ aspeak A simple text-to-speech client using azure TTS API(trial). 😆 TL;DR: This program uses trial auth token of Azure Cognitive Services to do s

Levi Zim 359 Jan 05, 2023
Genetic feature selection module for scikit-learn

sklearn-genetic Genetic feature selection module for scikit-learn Genetic algorithms mimic the process of natural selection to search for optimal valu

Manuel Calzolari 260 Dec 14, 2022
Code for "Intra-hour Photovoltaic Generation Forecasting based on Multi-source Data and Deep Learning Methods."

pv_predict_unet-lstm Code for "Intra-hour Photovoltaic Generation Forecasting based on Multi-source Data and Deep Learning Methods." IEEE Transactions

FolkScientistInDL 8 Oct 08, 2022
Simplified interface for TensorFlow (mimicking Scikit Learn) for Deep Learning

SkFlow has been moved to Tensorflow. SkFlow has been moved to http://github.com/tensorflow/tensorflow into contrib folder specifically located here. T

3.2k Dec 29, 2022
Benchmarks for semi-supervised domain generalization.

Semi-Supervised Domain Generalization This code is the official implementation of the following paper: Semi-Supervised Domain Generalization with Stoc

Kaiyang 49 Dec 10, 2022
meProp: Sparsified Back Propagation for Accelerated Deep Learning (ICML 2017)

meProp The codes were used for the paper meProp: Sparsified Back Propagation for Accelerated Deep Learning with Reduced Overfitting (ICML 2017) [pdf]

LancoPKU 107 Nov 18, 2022
Propose a principled and practically effective framework for unsupervised accuracy estimation and error detection tasks with theoretical analysis and state-of-the-art performance.

Detecting Errors and Estimating Accuracy on Unlabeled Data with Self-training Ensembles This project is for the paper: Detecting Errors and Estimating

Jiefeng Chen 13 Nov 21, 2022
Official Chainer implementation of GP-GAN: Towards Realistic High-Resolution Image Blending (ACMMM 2019, oral)

GP-GAN: Towards Realistic High-Resolution Image Blending (ACMMM 2019, oral) [Project] [Paper] [Demo] [Related Work: A2RL (for Auto Image Cropping)] [C

Wu Huikai 402 Dec 27, 2022
Self-Supervised Pre-Training for Transformer-Based Person Re-Identification

Self-Supervised Pre-Training for Transformer-Based Person Re-Identification [pdf] The official repository for Self-Supervised Pre-Training for Transfo

Hao Luo 116 Jan 04, 2023
MonoScene: Monocular 3D Semantic Scene Completion

MonoScene: Monocular 3D Semantic Scene Completion MonoScene: Monocular 3D Semantic Scene Completion] [arXiv + supp] | [Project page] Anh-Quan Cao, Rao

298 Jan 08, 2023
Julia package for multiway (inverse) covariance estimation.

TensorGraphicalModels TensorGraphicalModels.jl is a suite of Julia tools for estimating high-dimensional multiway (tensor-variate) covariance and inve

Wayne Wang 3 Sep 23, 2022