A computer vision pipeline to identify the "icons" in Christian paintings

Overview

Christian-Iconography

Open In Colab Screenshot from 2022-01-08 18-26-30

A computer vision pipeline to identify the "icons" in Christian paintings.

A bit about iconography.

Iconography is related to identifying the subject itself in the image. So, for instance when I say Christian Iconography I would mean that I am trying to identify some objects like crucifix or mainly in this project the saints!

Inspiration

I was looking for some interesting problem to solve and I came across RedHenLab's barnyard of projects and it had some really wonderful ideas there and this particular one intrigued me. On the site they didn't have much progress on it as the datasets were not developed on this subject but after surfing around I found something and just like that I got started!

Dataset used.

The project uses the ArtDL dataset which contains 42,479 images of artworks portraying Christian saints, divided in 10 classes: Saint Dominic (iconclass 11HH(DOMINIC)), Saint Francis of Assisi (iconclass 11H(FRANCIS)), Saint Jerome (iconclass 11H(JEROME)), Saint John the Baptist (iconclass 11H(JOHN THE BAPTIST)), Saint Anthony of Padua (iconclass 11H(ANTONY OF PADUA), Saint Mary Magdalene (iconclass 11HH(MARY MAGDALENE)), Saint Paul (iconclass 11H(PAUL)), Saint Peter (iconclass 11H(PETER)), Saint Sebastian (iconclass 11H(SEBASTIAN)) and Virgin Mary (iconclass 11F). All images are associated with high-level annotations specifying which iconography classes appear in them (from a minimum of 1 class to a maximum of 7 classes).

Sources

Screenshot from 2022-01-08 18-08-56

Preprocessing steps.

All the images were first padded so that the resolution is sort of intact when the image is resized. A dash of normalization and some horizontal flips and the dataset is ready to be eaten/trained on by our model xD.

Architecture used.

As mentioned the ArtDL dataset has around 43k images and hence training it completely wouldn't make sense. Hence a ResNet50 pretrained model was used.

But there is a twist.

Instead of just having the final classifying layer trained we only freeze the initial layer as it has gotten better at recognizing patterns from a lot of images it might have trained on. And then we fine-tune the deeper layers so that it learns the art after the initial abstraction. Another deviation is to replace the final linear layer by 1x1 conv layer to make the classification.

Quantiative Results.

Training

I trained the network for 10 epochs which took around 3 hours and used Stochastic Gradient Descent with LR=0.01 and momentum 0.9. The accuracy I got was 64% on the test set which can be further improved.

Classification Report

Screenshot from 2022-01-10 22-07-52

From the classification report it is clear that Saint MARY has the most number of samples in the training set and the precision for that is high. On the other hand other samples are low in number and hence their scores are low and hence we can't infer much except the fact that we need to oversample some of these classes so that we can gain more meaningful resuls w.r.t accuracy and of course these metrics as well

Qualitative Results

We try an image of Saint Dominic and see what our classifier is really learning.

Screenshot from 2022-01-10 22-10-37

Saliency Map

Screenshot from 2022-01-10 22-12-31

We can notice that regions around are more lighter than elsewhere which could mean that our classifier at least knows where to look :p

Guided-Backpropagation

Screenshot from 2022-01-10 22-14-26

So what really guided backprop does is that it points out the positve influences while classifiying an image. From this result we can see that it is really ignoring the padding applied and focussing more on the body and interesting enough the surroundings as well

Grad-CAM!

Screenshot from 2022-01-10 22-15-27

As expected the Grad-CAM when used shows the hot regions in our images and it is around the face and interesting enough the surrounding so maybe it could be that surroundings do have a role-play in type of saint?

Possible improvements.

  • Finding more datasets
  • Or working on the architecture maybe?
  • Using GANs to generate samples and make classifier stronger

Citations

@misc{milani2020data,
title={A Data Set and a Convolutional Model for Iconography Classification in Paintings},
author={Federico Milani and Piero Fraternali},
eprint={2010.11697},
archivePrefix={arXiv},
primaryClass={cs.CV},
year={2020}
}

RedhenLab's barnyard of projects

Owner
Rishab Mudliar
AKA Start At The Beginning.
Rishab Mudliar
A library for augmentation of a YOLO-formated dataset

YOLO Dataset Augmentation lib Инструкция по использованию этой библиотеки Запуск всех файлов осуществлять из консоли. GoogleCrawl_to_Dataset.py Это ск

Egor Orel 1 Dec 10, 2022
Official source code of paper 'IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo'

IterMVS official source code of paper 'IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo' Introduction IterMVS is a novel lear

Fangjinhua Wang 127 Jan 04, 2023
This is the repo for our work "Towards Persona-Based Empathetic Conversational Models" (EMNLP 2020)

Towards Persona-Based Empathetic Conversational Models (PEC) This is the repo for our work "Towards Persona-Based Empathetic Conversational Models" (E

Zhong Peixiang 35 Nov 17, 2022
Lighting the Darkness in the Deep Learning Era: A Survey, An Online Platform, A New Dataset

Lighting the Darkness in the Deep Learning Era: A Survey, An Online Platform, A New Dataset This repository provides a unified online platform, LoLi-P

Chongyi Li 457 Jan 03, 2023
GLANet - The code for Global and Local Alignment Networks for Unpaired Image-to-Image Translation arxiv

GLANet The code for Global and Local Alignment Networks for Unpaired Image-to-Image Translation arxiv Framework: visualization results: Getting Starte

stanley 29 Dec 14, 2022
ROS Basics and TurtleSim

Waypoint Follower Anna Garverick This package draws given waypoints, then waits for a service call with a start position to send the turtle to each wa

Anna Garverick 1 Dec 13, 2021
An atmospheric growth and evolution model based on the EVo degassing model and FastChem 2.0

EVolve Linking planetary mantles to atmospheric chemistry through volcanism using EVo and FastChem. Overview EVolve is a linked mantle degassing and a

Pip Liggins 2 Jan 17, 2022
PSML: A Multi-scale Time-series Dataset for Machine Learning in Decarbonized Energy Grids

PSML: A Multi-scale Time-series Dataset for Machine Learning in Decarbonized Energy Grids The electric grid is a key enabling infrastructure for the a

Texas A&M Engineering Research 19 Jan 07, 2023
PyTorch implementation of TSception V2 using DEAP dataset

TSception This is the PyTorch implementation of TSception V2 using DEAP dataset in our paper: Yi Ding, Neethu Robinson, Su Zhang, Qiuhao Zeng, Cuntai

Yi Ding 27 Dec 15, 2022
Monitora la qualità della ricezione dei segnali radio nelle province siciliane.

FMap-server Monitora la qualità della ricezione dei segnali radio nelle province siciliane. Conversion data Frequency - StationName maps are stored in

Triglie 5 May 24, 2021
Build Graph Nets in Tensorflow

Graph Nets library Graph Nets is DeepMind's library for building graph networks in Tensorflow and Sonnet. Contact DeepMind 5.2k Jan 05, 2023

GPOEO is a micro-intrusive GPU online energy optimization framework for iterative applications

GPOEO GPOEO is a micro-intrusive GPU online energy optimization framework for iterative applications. We also implement ODPP [1] as a comparison. [1]

瑞雪轻飏 8 Sep 10, 2022
(AAAI2020)Grapy-ML: Graph Pyramid Mutual Learning for Cross-dataset Human Parsing

Grapy-ML: Graph Pyramid Mutual Learning for Cross-dataset Human Parsing This repository contains pytorch source code for AAAI2020 oral paper: Grapy-ML

54 Aug 04, 2022
A PyTorch library and evaluation platform for end-to-end compression research

CompressAI CompressAI (compress-ay) is a PyTorch library and evaluation platform for end-to-end compression research. CompressAI currently provides: c

InterDigital 680 Jan 06, 2023
Pytorch implementation for "Large-Scale Long-Tailed Recognition in an Open World" (CVPR 2019 ORAL)

Large-Scale Long-Tailed Recognition in an Open World [Project] [Paper] [Blog] Overview Open Long-Tailed Recognition (OLTR) is the author's re-implemen

Zhongqi Miao 761 Dec 26, 2022
Open-source python package for the extraction of Radiomics features from 2D and 3D images and binary masks.

pyradiomics v3.0.1 Build Status Linux macOS Windows Radiomics feature extraction in Python This is an open-source python package for the extraction of

Artificial Intelligence in Medicine (AIM) Program 842 Dec 28, 2022
Sequential model-based optimization with a `scipy.optimize` interface

Scikit-Optimize Scikit-Optimize, or skopt, is a simple and efficient library to minimize (very) expensive and noisy black-box functions. It implements

Scikit-Optimize 2.5k Jan 04, 2023
SlideGraph+: Whole Slide Image Level Graphs to Predict HER2 Status in Breast Cancer

SlideGraph+: Whole Slide Image Level Graphs to Predict HER2 Status in Breast Cancer A novel graph neural network (GNN) based model (termed SlideGraph+

28 Dec 24, 2022
Dense Unsupervised Learning for Video Segmentation (NeurIPS*2021)

Dense Unsupervised Learning for Video Segmentation This repository contains the official implementation of our paper: Dense Unsupervised Learning for

Visual Inference Lab @TU Darmstadt 173 Dec 26, 2022
Minimal diffusion models - Minimal code and simple experiments to play with Denoising Diffusion Probabilistic Models (DDPMs)

Minimal code and simple experiments to play with Denoising Diffusion Probabilist

Rithesh Kumar 16 Oct 06, 2022