Isaac Gym Environments for Legged Robots

Related tags

Hardwarelegged_gym
Overview

Isaac Gym Environments for Legged Robots

This repository provides the environment used to train ANYmal (and other robots) to walk on rough terrain using NVIDIA's Isaac Gym. It includes all components needed for sim-to-real transfer: actuator network, friction & mass randomization, noisy observations and random pushes during training.
Maintainer: Nikita Rudin
Affiliation: Robotic Systems Lab, ETH Zurich
Contact: [email protected]

Useful Links

Project website: https://leggedrobotics.github.io/legged_gym/ Paper: https://arxiv.org/abs/2109.11978

Installation

  1. Create a new python virtual env with python 3.6, 3.7 or 3.8 (3.8 recommended)
  2. Install pytorch 1.10 with cuda-11.3:
    • pip3 install torch==1.10.0+cu113 torchvision==0.11.1+cu113 torchaudio==0.10.0+cu113 -f https://download.pytorch.org/whl/cu113/torch_stable.html
  3. Install Isaac Gym
    • Download and install Isaac Gym Preview 3 (Preview 2 will not work!) from https://developer.nvidia.com/isaac-gym
    • cd isaacgym_lib/python && pip install -e .
    • Try running an example python examples/1080_balls_of_solitude.py
    • For troubleshooting check docs isaacgym/docs/index.html)
  4. Install rsl_rl (PPO implementation)
  5. Install legged_gym
    • Clone this repository
    • cd legged_gym && git checkout develop && pip install -e .

CODE STRUCTURE

  1. Each environment is defined by an env file (legged_robot.py) and a config file (legged_robot_config.py). The config file contains two classes: one conatianing all the environment parameters (LeggedRobotCfg) and one for the training parameters (LeggedRobotCfgPPo).
  2. Both env and config classes use inheritance.
  3. Each non-zero reward scale specified in cfg will add a function with a corresponding name to the list of elements which will be summed to get the total reward.
  4. Tasks must be registered using task_registry.register(name, EnvClass, EnvConfig, TrainConfig). This is done in envs/__init__.py, but can also be done from outside of this repository.

Usage

  1. Train:
    python issacgym_anymal/scripts/train.py --task=anymal_c_flat
    • To run on CPU add following arguments: --sim_device=cpu, --rl_device=cpu (sim on CPU and rl on GPU is possible).
    • To run headless (no rendering) add --headless.
    • Important: To improve performance, once the training starts press v to stop the rendering. You can then enable it later to check the progress.
    • The trained policy is saved in issacgym_anymal/logs/ / _ /model_ .pt . Where and are defined in the train config.
    • The following command line arguments override the values set in the config files:
    • --task TASK: Task name.
    • --resume: Resume training from a checkpoint
    • --experiment_name EXPERIMENT_NAME: Name of the experiment to run or load.
    • --run_name RUN_NAME: Name of the run.
    • --load_run LOAD_RUN: Name of the run to load when resume=True. If -1: will load the last run.
    • --checkpoint CHECKPOINT: Saved model checkpoint number. If -1: will load the last checkpoint.
    • --num_envs NUM_ENVS: Number of environments to create.
    • --seed SEED: Random seed.
    • --max_iterations MAX_ITERATIONS: Maximum number of training iterations.
  2. Play a trained policy:
    python issacgym_anymal/scripts/play.py --task=anymal_c_flat
    • By default the loaded policy is the last model of the last run of the experiment folder.
    • Other runs/model iteration can be selected by setting load_run and checkpoint in the train config.

Adding a new environment

The base environment legged_robot implements a rough terrain locomotion task. The corresponding cfg does not specify a robot asset (URDF/ MJCF) and no reward scales.

  1. Add a new folder to envs/ with ' _config.py , which inherit from an existing environment cfgs
  2. If adding a new robot:
    • Add the corresponding assets to resourses/.
    • In cfg set the asset path, define body names, default_joint_positions and PD gains. Specify the desired train_cfg and the name of the environment (python class).
    • In train_cfg set experiment_name and run_name
  3. (If needed) implement your environment in .py, inherit from an existing environment, overwrite the desired functions and/or add your reward functions.
  4. Register your env in isaacgym_anymal/envs/__init__.py.
  5. Modify/Tune other parameters in your cfg, cfg_train as needed. To remove a reward set its scale to zero. Do not modify parameters of other envs!

Troubleshooting

  1. If you get the following error: ImportError: libpython3.8m.so.1.0: cannot open shared object file: No such file or directory, do: sudo apt install libpython3.8

Known Issues

  1. The contact forces reported by net_contact_force_tensor are unreliable when simulating on GPU with a triangle mesh terrain. A workaround is to use force sensors, but the force are propagated through the sensors of consecutive bodies resulting in an undesireable behaviour. However, for a legged robot it is possible to add sensors to the feet/end effector only and get the expected results. When using the force sensors make sure to exclude gravity from trhe reported forces with sensor_options.enable_forward_dynamics_forces. Example:
    sensor_pose = gymapi.Transform()
    for name in feet_names:
        sensor_options = gymapi.ForceSensorProperties()
        sensor_options.enable_forward_dynamics_forces = False # for example gravity
        sensor_options.enable_constraint_solver_forces = True # for example contacts
        sensor_options.use_world_frame = True # report forces in world frame (easier to get vertical components)
        index = self.gym.find_asset_rigid_body_index(robot_asset, name)
        self.gym.create_asset_force_sensor(robot_asset, index, sensor_pose, sensor_options)
    (...)

    sensor_tensor = self.gym.acquire_force_sensor_tensor(self.sim)
    self.gym.refresh_force_sensor_tensor(self.sim)
    force_sensor_readings = gymtorch.wrap_tensor(sensor_tensor)
    self.sensor_forces = force_sensor_readings.view(self.num_envs, 4, 6)[..., :3]
    (...)

    self.gym.refresh_force_sensor_tensor(self.sim)
    contact = self.sensor_forces[:, :, 2] > 1.
Owner
Robotic Systems Lab - Legged Robotics at ETH Zürich
The Robotic Systems Lab investigates the development of machines and their intelligence to operate in rough and challenging environments.
Robotic Systems Lab - Legged Robotics at ETH Zürich
A refreshed Python toolbox for building complex digital hardware

A refreshed Python toolbox for building complex digital hardware

nMigen 1k Jan 05, 2023
Example Python code for building RPi-controlled robotic systems

RPi Example Code Example Python code for building RPi-controlled robotic systems These python files have been compiled / developed by the Neurobionics

Elliott Rouse 2 Feb 04, 2022
Python module for controlling Broadlink RM2/3 (Pro) remote controls, A1 sensor platforms and SP2/3 smartplugs

Python module for controlling Broadlink RM2/3 (Pro) remote controls, A1 sensor platforms and SP2/3 smartplugs

Matthew Garrett 1.2k Jan 04, 2023
Samples for robotics, node, python, and bash

RaspberryPi Robot Project Technologies: Render: intent Currently designed to act as programmable sentry.

Martin George 1 May 31, 2022
A python script for Homeassistant that counts down the days to birthdays, anniversaries etc

Date Countdown A python script for Homeassistant that counts down the days to birthdays, anniversaries etc Important note I no longer use homeassistan

Marc Forth 21 Mar 12, 2022
A module for cross-platform control of the mouse and keyboard in python that is simple to install and use.

PyUserInput PyUserInput is a group project so we've moved the project over to a group organization: https://github.com/PyUserInput/PyUserInput . That

Paul Barton 1k Dec 27, 2022
Automatic Watering System using Soil Moisture Sensor and RTC Timer with Arduino

Automatic-Watering-System - Technical Answers to Real-World Problems. Evolution of Watering Manually to Watering Automatically.

Vaishnavi Pothugunta 4 Dec 31, 2021
Final-project-robokeeper created by GitHub Classroom

RoboKeeper! Jonny Bosnich, Joshua Cho, Lio Liang, Marco Morales, Cody Nichoson Demonstration Videos Grabbing the paddle: https://youtu.be/N0HPvFNHrTw

Cody Nichoson 1 Dec 12, 2021
🎃 Some spooky code samples to hack yourself a pumpkin 👻

🎃 Tech Or Treat 👻 It's spooky season for those who celebrate Halloween, and to get in the spirit (spirit - get it? 👻 ) we thought it would be fun t

Jim Bennett 5 Feb 07, 2022
Volkswagen ID component for Home Assistant

Volkswagen ID component for Home Assistant This folder contains both a generic Python 3 library for the Volkswagen ID API and a component for Home Ass

55 Jan 07, 2023
PyLog - Simple keylogger that uses pynput to listen to keyboard input.

Simple keylogger that uses pynput to listen to keyboard input. Outputs to a text file and the terminal. Press the escape key to stop.

1 Dec 29, 2021
Testing additional addon devices, and their working scripts

ESP32-addon-devices-potpurri Testing additional addon devices, and their micropython working scripts 📑 List of device addons tested so far Ethernet P

f-caro 0 Nov 26, 2022
Example code to sending USB Gadget multimedia keys via Python

Send Multimedia USB HID Keys via Python As an USB Gadget in Linux This gives a simple script with zero dependencies that can easily run on any Linux d

DevOps Nirvana 2 Jan 02, 2023
A simple Python script for toggling Philips Hue Lights by clapping

LightsClap A simple Python script for toggling Philips Hue Lights by clapping Usage pip3 install -r requirements.txt python3 main.py and press the Ent

Flux Industries 2 Nov 16, 2021
Robot Framework keyword library wrapper for atlassian-python-api

Robot Framework keyword library wrapper for atlassian-python-api

Marcin Koperski 3 Jul 29, 2022
Resmed_myair_sensors - This is a Home Assistant custom component to pull daily CPAP data from ResMed's myAir service using an undocumented API

resmed_myair This component will set up the following platforms. Platform Description sensor Show info from the myAir API. Installation Using the tool

Preston Tamkin 17 Dec 29, 2022
Vvim - Keyboardless Vim interactions

This is done via a hardware glove that the user wears. The glove detects the finger's positions and translates them into key presses. It's currently a work in progress.

Boyd Kane 8 Nov 17, 2022
A python script for macOS to enable scrolling with the 3M ergonomic mouse EM500GPS in any application.

A python script for macOS to enable scrolling with the 3M ergonomic mouse EM500GPS in any application.

3 Feb 19, 2022
View your medication from Medisafe Cloud in Home Assistant

Medisafe View your medication from Medisafe Cloud in Home Assistant. This integration adds sensors for today's upcoming, taken, skipped, and missed do

Sam Steele 12 Dec 27, 2022
ESP32 micropython implementation of Art-Net client

E_uArtnet ESP32 micropython implementation of Art-Net client Instalation Use thonny Open the root folder in thonny and upload the Empire folder like i

2 Dec 07, 2021