This is the code related to "Sparse-to-dense Feature Matching: Intra and Inter domain Cross-modal Learning in Domain Adaptation for 3D Semantic Segmentation" (ICCV 2021).

Related tags

Deep LearningDsCML
Overview

Sparse-to-dense Feature Matching: Intra and Inter domain Cross-modal Learning in Domain Adaptation for 3D Semantic Segmentation

This is the code related to "Sparse-to-dense Feature Matching: Intra and Inter domain Cross-modal Learning in Domain Adaptation for 3D Semantic Segmentation" (ICCV 2021).

1. Paper

Sparse-to-dense Feature Matching: Intra and Inter domain Cross-modal Learning in Domain Adaptation for 3D Semantic Segmentation
IEEE International Conference on Computer Vision (ICCV 2021)

If you find it helpful to your research, please cite as follows:

@inproceedings{peng2021sparse,
  title={Sparse-to-dense Feature Matching: Intra and Inter domain Cross-modal Learning in Domain Adaptation for 3D Semantic Segmentation},
  author={Peng, Duo and Lei, Yinjie and Li, Wen and Zhang, Pingping and Guo, Yulan},
  booktitle={Proceedings of the International Conference on Computer Vision (ICCV)},
  year={2021},
  publisher={IEEE}
}

2. Preparation

You can follow the next steps to install the requairmented environment. This code is mainly modified from xMUDA, you can also refer to its README if the installation isn't going well.

2.1 Setup a Conda environment:

First, you are recommended to create a new Conda environment named nuscenes.

conda create --name nuscenes python=3.7

You can enable the virtual environment using:

conda activate nuscenes 

To deactivate the virtual environment, use:

source deactivate

2.2 Install nuscenes-devkit:

Download the devkit to your computer, decompress and enter it.

Add the python-sdk directory to your PYTHONPATH environmental variable, by adding the following to your ~/.bashrc:

export PYTHONPATH="${PYTHONPATH}:$HOME/nuscenes-devkit/python-sdk"

Using cmd (make sure the environment "nuscenes" is activated) to install the base environment:

pip install -r setup/requirements.txt

Setup environment variable:

export NUSCENES="/data/sets/nuscenes"

Using the cmd to finally install it:

pip install nuscenes-devkit

After the above steps, the devikit is installed, for any question you can refer to devikit_installation_help

If you meet the error with "pycocotools", you can try following steps:

(1) Install Cython in your environment:

sudo apt-get installl Cython
pip install cython

(2) Download the cocoapi to your computer, decompress and enter it.

(3) Using cmd to enter the path under "PythonAPI", type:

make

(4) Type:

pip install pycocotools

2.3 Install SparseConveNet:

Download the SparseConveNet to your computer, decompress, enter and develop it:

cd SparseConvNet/
bash develop.sh

3. Datasets Preparation

For Dataset preprocessing, the code and steps are highly borrowed from xMUDA, you can see more preprocessing details from this Link. We summarize the preprocessing as follows:

3.1 NuScenes

Download Nuscenes from NuScenes website and extract it.

Before training, you need to perform preprocessing to generate the data first. Please edit the script DsCML/data/nuscenes/preprocess.py as follows and then run it.

root_dir should point to the root directory of the NuScenes dataset

out_dir should point to the desired output directory to store the pickle files

3.2 A2D2

Download the A2D2 Semantic Segmentation dataset and Sensor Configuration from the Audi website

Similar to NuScenes preprocessing, please save all points that project into the front camera image as well as the segmentation labels to a pickle file.

Please edit the script DsCML/data/a2d2/preprocess.py as follows and then run it.

root_dir should point to the root directory of the A2D2 dataset

out_dir should point to the desired output directory to store the undistorted images and pickle files.

It should be set differently than the root_dir to prevent overwriting of images.

3.3 SemanticKITTI

Download the files from the SemanticKITTI website and additionally the color data from the Kitti Odometry website. Extract everything into the same folder.

Please edit the script DsCML/data/semantic_kitti/preprocess.py as follows and then run it.

root_dir should point to the root directory of the SemanticKITTI dataset out_dir should point to the desired output directory to store the pickle files

4. Usage

You can training the DsCML by using cmd or IDE such as Pycharm.

python DsCML/train_DsCML.py --cfg=../configs/nuscenes/day_night/xmuda.yaml

The output will be written to /home/<user>/workspace by default. You can change the path OUTPUT_DIR in the config file in (e.g. configs/nuscenes/day_night/xmuda.yaml)

You can start the trainings on the other UDA scenarios (USA/Singapore and A2D2/SemanticKITTI):

python DsCML/train_DsCML.py --cfg=../configs/nuscenes/usa_singapore/xmuda.yaml
python DsCML/train_DsCML.py --cfg=../configs/a2d2_semantic_kitti/xmuda.yaml

5. Results

We present several qualitative results reported in our paper.

Update Status

The code of CMAL is updated. (2021-10-04)

Implementation of Ag-Grid component for Streamlit

streamlit-aggrid AgGrid is an awsome grid for web frontend. More information in https://www.ag-grid.com/. Consider purchasing a license from Ag-Grid i

Pablo Fonseca 556 Dec 31, 2022
Large-scale language modeling tutorials with PyTorch

Large-scale language modeling tutorials with PyTorch 안녕하세요. 저는 TUNiB에서 머신러닝 엔지니어로 근무 중인 고현웅입니다. 이 자료는 대규모 언어모델 개발에 필요한 여러가지 기술들을 소개드리기 위해 마련하였으며 기본적으로

TUNiB 172 Dec 29, 2022
Learning from Guided Play: A Scheduled Hierarchical Approach for Improving Exploration in Adversarial Imitation Learning Source Code

Learning from Guided Play: A Scheduled Hierarchical Approach for Improving Exploration in Adversarial Imitation Learning Source Code

STARS Laboratory 8 Sep 14, 2022
This is the official implementation of our proposed SwinMR

SwinMR This is the official implementation of our proposed SwinMR: Swin Transformer for Fast MRI Please cite: @article{huang2022swin, title={Swi

A Yang Lab (led by Dr Guang Yang) 27 Nov 17, 2022
Generalized Data Weighting via Class-level Gradient Manipulation

Generalized Data Weighting via Class-level Gradient Manipulation This repository is the official implementation of Generalized Data Weighting via Clas

18 Nov 12, 2022
Non-Imaging Transient Reconstruction And TEmporal Search (NITRATES)

Non-Imaging Transient Reconstruction And TEmporal Search (NITRATES) This repo contains the full NITRATES pipeline for maximum likelihood-driven discov

13 Nov 08, 2022
Facebook Research 605 Jan 02, 2023
PyTorch implementation of our Adam-NSCL algorithm from our CVPR2021 (oral) paper "Training Networks in Null Space for Continual Learning"

Adam-NSCL This is a PyTorch implementation of Adam-NSCL algorithm for continual learning from our CVPR2021 (oral) paper: Title: Training Networks in N

Shipeng Wang 34 Dec 21, 2022
Lane assist for ETS2, built with the ultra-fast-lane-detection model.

Euro-Truck-Simulator-2-Lane-Assist Lane assist for ETS2, built with the ultra-fast-lane-detection model. This project was made possible by the amazing

36 Jan 05, 2023
Python scripts for performing stereo depth estimation using the HITNET Tensorflow model.

HITNET-Stereo-Depth-estimation Python scripts for performing stereo depth estimation using the HITNET Tensorflow model from Google Research. Stereo de

Ibai Gorordo 76 Jan 02, 2023
Official repository for "PAIR: Planning and Iterative Refinement in Pre-trained Transformers for Long Text Generation"

pair-emnlp2020 Official repository for the paper: Xinyu Hua and Lu Wang: PAIR: Planning and Iterative Refinement in Pre-trained Transformers for Long

Xinyu Hua 31 Oct 13, 2022
Cross-Task Consistency Learning Framework for Multi-Task Learning

Cross-Task Consistency Learning Framework for Multi-Task Learning Tested on numpy(v1.19.1) opencv-python(v4.4.0.42) torch(v1.7.0) torchvision(v0.8.0)

Aki Nakano 2 Jan 08, 2022
Generic Foreground Segmentation in Images

Pixel Objectness The following repository contains pretrained model for pixel objectness. Please visit our project page for the paper and visual resul

Suyog Jain 157 Nov 21, 2022
Weakly Supervised Posture Mining with Reverse Cross-entropy for Fine-grained Classification

Fine-grainedImageClassification Weakly Supervised Posture Mining with Reverse Cross-entropy for Fine-grained Classification We trained model here: lin

ZhenchaoTang 14 Oct 21, 2022
Bayesian regularization for functional graphical models.

BayesFGM Paper: Jiajing Niu, Andrew Brown. Bayesian regularization for functional graphical models. Requirements R version 3.6.3 and up Python 3.6 and

0 Oct 07, 2021
Just playing with getting VQGAN+CLIP running locally, rather than having to use colab.

Just playing with getting VQGAN+CLIP running locally, rather than having to use colab.

Nerdy Rodent 2.3k Jan 04, 2023
Rethinking Semantic Segmentation from a Sequence-to-Sequence Perspective with Transformers

Segmentation Transformer Implementation of Segmentation Transformer in PyTorch, a new model to achieve SOTA in semantic segmentation while using trans

Abhay Gupta 161 Dec 08, 2022
MRI reconstruction (e.g., QSM) using deep learning methods

deepMRI: Deep learning methods for MRI Authors: Yang Gao, Hongfu Sun This repo is devloped based on Pytorch (1.8 or later) and matlab (R2019a or later

Hongfu Sun 17 Dec 18, 2022
Recall Loss for Semantic Segmentation (This repo implements the paper: Recall Loss for Semantic Segmentation)

Recall Loss for Semantic Segmentation (This repo implements the paper: Recall Loss for Semantic Segmentation) Download Synthia dataset The model uses

32 Sep 21, 2022
Library extending Jupyter notebooks to integrate with Apache TinkerPop and RDF SPARQL.

Graph Notebook: easily query and visualize graphs The graph notebook provides an easy way to interact with graph databases using Jupyter notebooks. Us

Amazon Web Services 501 Dec 28, 2022