Official PyTorch implementation of "Contrastive Learning from Extremely Augmented Skeleton Sequences for Self-supervised Action Recognition" in AAAI2022.

Related tags

Deep LearningAimCLR
Overview

AimCLR

This is an official PyTorch implementation of "Contrastive Learning from Extremely Augmented Skeleton Sequences for Self-supervised Action Recognition" in AAAI2022.

Requirements

Python >=3.6 PyTorch >=1.6

Data Preparation

  • Download the raw data of NTU RGB+D and PKU-MMD.
  • For NTU RGB+D dataset, preprocess data with tools/ntu_gendata.py. For PKU-MMD dataset, preprocess data with tools/pku_part1_gendata.py.
  • Then downsample the data to 50 frames with feeder/preprocess_ntu.py and feeder/preprocess_pku.py.
  • If you don't want to process the original data, download the file folder action_dataset.

Installation

# Install torchlight
$ cd torchlight
$ python setup.py install
$ cd ..

# Install other python libraries
$ pip install -r requirements.txt

Unsupervised Pre-Training

Example for unsupervised pre-training of 3s-AimCLR. You can change some settings of .yaml files in config/ntu60/pretext folder.

# train on NTU RGB+D xview joint stream
$ python main.py pretrain_aimclr --config config/ntu60/pretext/pretext_aimclr_xview_joint.yaml

# train on NTU RGB+D xview motion stream
$ python main.py pretrain_aimclr --config config/ntu60/pretext/pretext_aimclr_xview_motion.yaml

# train on NTU RGB+D xview bone stream
$ python main.py pretrain_aimclr --config config/ntu60/pretext/pretext_aimclr_xview_bone.yaml

Linear Evaluation

Example for linear evaluation of 3s-AimCLR. You can change .yaml files in config/ntu60/linear_eval folder.

# Linear_eval on NTU RGB+D xview
$ python main.py linear_evaluation --config config/ntu60/linear_eval/linear_eval_aimclr_xview_joint.yaml

$ python main.py linear_evaluation --config config/ntu60/linear_eval/linear_eval_aimclr_xview_motion.yaml

$ python main.py linear_evaluation --config config/ntu60/linear_eval/linear_eval_aimclr_xview_bone.yaml

Trained models

We release several trained models in released_model. The performance is better than that reported in the paper. You can download them and test them with linear evaluation by changing weights in .yaml files.

Model NTU 60 xsub (%) NTU 60 xview (%) PKU-MMD Part I (%)
AimCLR-joint 74.34 79.68 83.43
AimCLR-motion 68.68 71.83 72.00
AimCLR-bone 71.87 77.02 82.03
3s-AimCLR 79.18 84.02 87.79

Visualization

The t-SNE visualization of the embeddings after AimCLR pre-training on NTU60-xsub.

Citation

Please cite our paper if you find this repository useful in your resesarch:

@inproceedings{guo2022aimclr,
  Title= {Contrastive Learning from Extremely Augmented Skeleton Sequences for Self-supervised Action Recognition},
  Author= {Tianyu, Guo and Hong, Liu and Zhan, Chen and Mengyuan, Liu and Tao, Wang  and Runwei, Ding},
  Booktitle= {AAAI},
  Year= {2022}
}

Acknowledgement

The framework of our code is extended from the following repositories. We sincerely thank the authors for releasing the codes.

  • The framework of our code is based on CrosSCLR.
  • The encoder is based on ST-GCN.

Licence

This project is licensed under the terms of the MIT license.

Making a music video with Wav2CLIP and VQGAN-CLIP

music2video Overview A repo for making a music video with Wav2CLIP and VQGAN-CLIP. The base code was derived from VQGAN-CLIP The CLIP embedding for au

Joel Jang | 장요엘 163 Dec 26, 2022
NER for Indian languages

CL-NERIL: A Cross-Lingual Model for NER in Indian Languages Code for the paper - https://arxiv.org/abs/2111.11815 Setup Setup a virtual environment Th

Akshara P 0 Nov 24, 2021
A collection of educational notebooks on multi-view geometry and computer vision.

Multiview notebooks This is a collection of educational notebooks on multi-view geometry and computer vision. Subjects covered in these notebooks incl

Max 65 Dec 09, 2022
Unified MultiWOZ evaluation scripts for the context-to-response task.

MultiWOZ Context-to-Response Evaluation Standardized and easy to use Inform, Success, BLEU ~ See the paper ~ Easy-to-use scripts for standardized eval

Tomáš Nekvinda 38 Dec 13, 2022
Deep metric learning methods implemented in Chainer

Deep Metric Learning Implementation of several methods for deep metric learning in Chainer v4.2.0. Proxy-NCA: No Fuss Distance Metric Learning using P

ronekko 156 Nov 28, 2022
OpenMMLab Detection Toolbox and Benchmark

MMDetection is an open source object detection toolbox based on PyTorch. It is a part of the OpenMMLab project.

OpenMMLab 22.5k Jan 05, 2023
Deep Ensemble Learning with Jet-Like architecture

Ransomware analysis using DEL with jet-like architecture comprising two CNN wings, a sparse AE tail, a non-linear PCA to produce a diverse feature space, and an MLP nose

Ahsen Nazir 2 Feb 06, 2022
An official repository for Paper "Uformer: A General U-Shaped Transformer for Image Restoration".

Uformer: A General U-Shaped Transformer for Image Restoration Zhendong Wang, Xiaodong Cun, Jianmin Bao and Jianzhuang Liu Paper: https://arxiv.org/abs

Zhendong Wang 497 Dec 22, 2022
MLSpace: Hassle-free machine learning & deep learning development

MLSpace: Hassle-free machine learning & deep learning development

abhishek thakur 293 Jan 03, 2023
Read and write layered TIFF ImageSourceData and ImageResources tags

Read and write layered TIFF ImageSourceData and ImageResources tags Psdtags is a Python library to read and write the Adobe Photoshop(r) specific Imag

Christoph Gohlke 4 Feb 05, 2022
This project hosts the code for implementing the ISAL algorithm for object detection and image classification

Influence Selection for Active Learning (ISAL) This project hosts the code for implementing the ISAL algorithm for object detection and image classifi

25 Sep 11, 2022
Gif-caption - A straightforward GIF Captioner written in Python

Broksy's GIF Captioner Have you ever wanted to easily caption a GIF without havi

3 Apr 09, 2022
Official PyTorch implementation of MX-Font (Multiple Heads are Better than One: Few-shot Font Generation with Multiple Localized Experts)

Introduction Pytorch implementation of Multiple Heads are Better than One: Few-shot Font Generation with Multiple Localized Expert. | paper Song Park1

Clova AI Research 97 Dec 23, 2022
Speckle-free Holography with Partially Coherent Light Sources and Camera-in-the-loop Calibration

Speckle-free Holography with Partially Coherent Light Sources and Camera-in-the-loop Calibration Project Page | Paper Yifan Peng*, Suyeon Choi*, Jongh

Stanford Computational Imaging Lab 19 Dec 11, 2022
Code for IntraQ, PyTorch implementation of our paper under review

IntraQ: Learning Synthetic Images with Intra-Class Heterogeneity for Zero-Shot Network Quantization paper Requirements Python = 3.7.10 Pytorch == 1.7

1 Nov 19, 2021
A wrapper around SageMaker ML Lineage Tracking extending ML Lineage to end-to-end ML lifecycles, including additional capabilities around Feature Store groups, queries, and other relevant artifacts.

ML Lineage Helper This library is a wrapper around the SageMaker SDK to support ease of lineage tracking across the ML lifecycle. Lineage artifacts in

AWS Samples 12 Nov 01, 2022
Winners of the Facebook Image Similarity Challenge

Winners of the Facebook Image Similarity Challenge

DrivenData 111 Jan 05, 2023
[CVPR2022] Bridge-Prompt: Towards Ordinal Action Understanding in Instructional Videos

Bridge-Prompt: Towards Ordinal Action Understanding in Instructional Videos Created by Muheng Li, Lei Chen, Yueqi Duan, Zhilan Hu, Jianjiang Feng, Jie

58 Dec 23, 2022
Weight estimation in CT by multi atlas techniques

maweight A Python package for multi-atlas based weight estimation for CT images, including segmentation by registration, feature extraction and model

György Kovács 0 Dec 24, 2021
Camera-caps - Examine the camera capabilities for V4l2 cameras

camera-caps This is a graphical user interface over the v4l2-ctl command line to

Jetsonhacks 25 Dec 26, 2022