pytorch implementation of Attention is all you need

Overview

A Pytorch Implementation of the Transformer: Attention Is All You Need

Our implementation is largely based on Tensorflow implementation

Requirements

Why This Project?

I'm a freshman of pytorch. So I tried to implement some projects by pytorch. Recently, I read the paper Attention is all you need and impressed by the idea. So that's it. I got similar result compared with the original tensorflow implementation.

Differences with the original paper

I don't intend to replicate the paper exactly. Rather, I aim to implement the main ideas in the paper and verify them in a SIMPLE and QUICK way. In this respect, some parts in my code are different than those in the paper. Among them are

  • I used the IWSLT 2016 de-en dataset, not the wmt dataset because the former is much smaller, and requires no special preprocessing.
  • I constructed vocabulary with words, not subwords for simplicity. Of course, you can try bpe or word-piece if you want.
  • I parameterized positional encoding. The paper used some sinusoidal formula, but Noam, one of the authors, says they both work. See the discussion in reddit
  • The paper adjusted the learning rate to global steps. I fixed the learning to a small number, 0.0001 simply because training was reasonably fast enough with the small dataset (Only a couple of hours on a single GTX 1060!!).

File description

  • hyperparams.py includes all hyper parameters that are needed.
  • prepro.py creates vocabulary files for the source and the target.
  • data_load.py contains functions regarding loading and batching data.
  • modules.py has all building blocks for encoder/decoder networks.
  • train.py has the model.
  • eval.py is for evaluation.

Training

wget -qO- https://wit3.fbk.eu/archive/2016-01//texts/de/en/de-en.tgz | tar xz; mv de-en corpora
  • STEP 2. Adjust hyper parameters in hyperparams.py if necessary.
  • STEP 3. Run prepro.py to generate vocabulary files to the preprocessed folder.
  • STEP 4. Run train.py or download pretrained weights, put it into folder './models/' and change the eval_epoch in hpyerparams.py to 18
  • STEP 5. Show loss and accuracy in tensorboard
tensorboard --logdir runs

Evaluation

  • Run eval.py.

Results

I got a BLEU score of 16.7.(tensorflow implementation 17.14) (Recollect I trained with a small dataset, limited vocabulary) Some of the evaluation results are as follows. Details are available in the results folder.

source: Ich bin nicht sicher was ich antworten soll
expected: I'm not really sure about the answer
got: I'm not sure what I'm going to answer

source: Was macht den Unterschied aus
expected: What makes his story different
got: What makes a difference

source: Vielen Dank
expected: Thank you
got: Thank you

source: Das ist ein Baum
expected: This is a tree
got: So this is a tree

Owner
Phd in SJTU
Repository to hold code for the cap-bot varient that is being presented at the SIIC Defence Hackathon 2021.

capbot-siic Repository to hold code for the cap-bot varient that is being presented at the SIIC Defence Hackathon 2021. Problem Inspiration A plethora

Aryan Kargwal 19 Feb 17, 2022
txtai: Build AI-powered semantic search applications in Go

txtai: Build AI-powered semantic search applications in Go txtai executes machine-learning workflows to transform data and build AI-powered semantic s

NeuML 49 Dec 06, 2022
🌸 fastText + Bloom embeddings for compact, full-coverage vectors with spaCy

floret: fastText + Bloom embeddings for compact, full-coverage vectors with spaCy floret is an extended version of fastText that can produce word repr

Explosion 222 Dec 16, 2022
Write Alphabet, Words and Sentences with your eyes.

The-Next-Gen-AI-Eye-Writer The Eye tracking Technique has become one of the most popular techniques within the human and computer interaction era, thi

Rohan Kasabe 2 Apr 05, 2022
Longformer: The Long-Document Transformer

Longformer Longformer and LongformerEncoderDecoder (LED) are pretrained transformer models for long documents. ***** New December 1st, 2020: Longforme

AI2 1.6k Dec 29, 2022
A collection of Classical Chinese natural language processing models, including Classical Chinese related models and resources on the Internet.

GuwenModels: 古文自然语言处理模型合集, 收录互联网上的古文相关模型及资源. A collection of Classical Chinese natural language processing models, including Classical Chinese related models and resources on the Internet.

Ethan 66 Dec 26, 2022
StarGAN - Official PyTorch Implementation

StarGAN - Official PyTorch Implementation ***** New: StarGAN v2 is available at https://github.com/clovaai/stargan-v2 ***** This repository provides t

Yunjey Choi 5.1k Dec 30, 2022
SIGIR'22 paper: Axiomatically Regularized Pre-training for Ad hoc Search

Introduction This codebase contains source-code of the Python-based implementation (ARES) of our SIGIR 2022 paper. Chen, Jia, et al. "Axiomatically Re

Jia Chen 17 Nov 09, 2022
AEC_DeepModel - Deep learning based acoustic echo cancellation baseline code

AEC_DeepModel - Deep learning based acoustic echo cancellation baseline code

凌逆战 75 Dec 05, 2022
Biterm Topic Model (BTM): modeling topics in short texts

Biterm Topic Model Bitermplus implements Biterm topic model for short texts introduced by Xiaohui Yan, Jiafeng Guo, Yanyan Lan, and Xueqi Cheng. Actua

Maksim Terpilowski 49 Dec 30, 2022
Contains descriptions and code of the mini-projects developed in various programming languages

TexttoSpeechAndLanguageTranslator-project introduction A pleasant application where the client will be given buttons like play,reset and exit. The cli

Adarsh Reddy 1 Dec 22, 2021
An easy-to-use framework for BERT models, with trainers, various NLP tasks and detailed annonations

FantasyBert English | 中文 Introduction An easy-to-use framework for BERT models, with trainers, various NLP tasks and detailed annonations. You can imp

Fan 137 Oct 26, 2022
Pipeline for training LSA models using Scikit-Learn.

Latent Semantic Analysis Pipeline for training LSA models using Scikit-Learn. Usage Instead of writing custom code for latent semantic analysis, you j

Dani El-Ayyass 23 Sep 05, 2022
Sequence Modeling with Structured State Spaces

Structured State Spaces for Sequence Modeling This repository provides implementations and experiments for the following papers. S4 Efficiently Modeli

HazyResearch 902 Jan 06, 2023
An Analysis Toolkit for Natural Language Generation (Translation, Captioning, Summarization, etc.)

VizSeq is a Python toolkit for visual analysis on text generation tasks like machine translation, summarization, image captioning, speech translation

Facebook Research 409 Oct 28, 2022
Mednlp - Medical natural language parsing and utility library

Medical natural language parsing and utility library A natural language medical

Paul Landes 3 Aug 24, 2022
PyTorch implementation of "data2vec: A General Framework for Self-supervised Learning in Speech, Vision and Language" from Meta AI

data2vec-pytorch PyTorch implementation of "data2vec: A General Framework for Self-supervised Learning in Speech, Vision and Language" from Meta AI (F

Aryan Shekarlaban 105 Jan 04, 2023
Fast, DB Backed pretrained word embeddings for natural language processing.

Embeddings Embeddings is a python package that provides pretrained word embeddings for natural language processing and machine learning. Instead of lo

Victor Zhong 212 Nov 21, 2022
Model parallel transformers in JAX and Haiku

Table of contents Mesh Transformer JAX Updates Pretrained Models GPT-J-6B Links Acknowledgments License Model Details Zero-Shot Evaluations Architectu

Ben Wang 4.9k Jan 04, 2023
✔👉A Centralized WebApp to Ensure Road Safety by checking on with the activities of the driver and activating label generator using NLP.

AI-For-Road-Safety Challenge hosted by Omdena Hyderabad Chapter Original Repo Link : https://github.com/OmdenaAI/omdena-india-roadsafety Final Present

Prathima Kadari 7 Nov 29, 2022