This framework implements the data poisoning method found in the paper Adversarial Examples Make Strong Poisons

Overview

Adversarial poison generation and evaluation.

This framework implements the data poisoning method found in the paper Adversarial Examples Make Strong Poisons, authored by Liam Fowl, Micah Goldblum, Ping-yeh Chiang, Jonas Geiping, Wojtek Czaja, Tom Goldstein.

We use and adapt code from the publicly available Witches' Brew (Geiping et al.) github repository.

Dependencies:

  • PyTorch => 1.6.*
  • torchvision > 0.5.*

USAGE:

The cmd-line script anneal.py is responsible for generating poisons.

Other possible arguments for poison generation can be found under village/options.py. Many of these arguments do not apply to our implementation and are relics from the github repository which we adapted (see above).

Teaser

CIFAR-10 Example

Generation

To poison CIFAR-10 with our most powerful attack (class targeted), for a ResNet-18 with epsilon bound 8, use python anneal.py --net ResNet18 --recipe targeted --eps 8 --budget 1.0 --target_criterion reverse_xent --save poison_dataset_batched --poison_path /path/to/save/poisons --attackoptim PGD

  • Note 1: this will generate poisons according to a simple label permutation found in poison_generation/shop/forgemaster_targeted.py defined in the _label_map method. One can easily modify this to any permutation on the label space.

  • Note 2: this could take several hours depending on the GPU used. To decrease the time, use the flag --restarts 1. This will decrease the time required to craft the poisons, but also potentially decrease the potency of the poisons.

Generating poisons with untargeted attacks is more brittle, and the success of the generated poisons vary depending on the poison initialization much more than the targeted attacks. Because generating multiple sets of poisons can take a longer time, we have included an anonymous google drive link to one of our best untargeted dataset for CIFAR-10. This can be evaluated in the same way as the poisons generated with the above command, simply download the zip file from here and extract the data.

Evaluation

You can then evaluate the poisons you generated (saved in poisons) by running python poison_evaluation/main.py --load_path /path/to/your/saved/poisons --runs 1

Where --load_path specifies the path to the generated poisons, and --runs specifies how many runs to evaluate the poisons over. This will test on a ResNet-18, but this can be changed with the --net flag.

ImageNet

ImageNet poisons can be optimized in a similar way, although it requires much more time and resources to do so. If you would like to attempt this, you can use the included info.pkl file. This splits up the ImageNet dataset into subsets of 25k that can then be crafted one at a time (52 subsets in total). Each subset can take anywhere from 1-3 days to craft depending on your GPU resources. You also need >200gb of storage to store the generated dataset.

A command for crafting on one such subset is:

python anneal.py --recipe targeted --eps 8 --budget 1.0 --dataset ImageNet --pretrained --target_criterion reverse_xent --poison_partition 25000 --save poison_dataset_batched --poison_path /path/to/save/poisons --restarts 1 --resume /path/to/info.pkl --resume_idx 0 --attackoptim PGD

You can generate poisons for all of ImageNet by iterating through all the indices (0,1,2,...,51) of the ImageNet subsets.

  • Note: we are working to produce/run a deterministic seeded version of the above ImageNet generation and we will update the code appropriately.
A library for uncertainty quantification based on PyTorch

Torchuq [logo here] TorchUQ is an extensive library for uncertainty quantification (UQ) based on pytorch. TorchUQ currently supports 10 representation

TorchUQ 96 Dec 12, 2022
Doge-Prediction - Coding Club prediction ig

Doge-Prediction Coding Club prediction ig Basically: Create an application that

1 Jan 10, 2022
A PyTorch re-implementation of the paper 'Exploring Simple Siamese Representation Learning'. Reproduced the 67.8% Top1 Acc on ImageNet.

Exploring simple siamese representation learning This is a PyTorch re-implementation of the SimSiam paper on ImageNet dataset. The results match that

Taojiannan Yang 72 Nov 09, 2022
Diverse Branch Block: Building a Convolution as an Inception-like Unit

Diverse Branch Block: Building a Convolution as an Inception-like Unit (PyTorch) (CVPR-2021) DBB is a powerful ConvNet building block to replace regul

253 Dec 24, 2022
Official implementation of the RAVE model: a Realtime Audio Variational autoEncoder

RAVE: Realtime Audio Variational autoEncoder Official implementation of RAVE: A variational autoencoder for fast and high-quality neural audio synthes

ACIDS 587 Jan 01, 2023
A Data Annotation Tool for Semantic Segmentation, Object Detection and Lane Line Detection.(In Development Stage)

Data-Annotation-Tool How to Run this Tool? To run this software, follow the steps: git clone https://github.com/Autonomous-Car-Project/Data-Annotation

TiVRA AI 13 Aug 18, 2022
Implementation of the paper "Self-Promoted Prototype Refinement for Few-Shot Class-Incremental Learning"

Self-Promoted Prototype Refinement for Few-Shot Class-Incremental Learning This is the implementation of the paper "Self-Promoted Prototype Refinement

Kai Zhu 78 Dec 02, 2022
PromptDet: Expand Your Detector Vocabulary with Uncurated Images

PromptDet: Expand Your Detector Vocabulary with Uncurated Images Paper Website Introduction The goal of this work is to establish a scalable pipeline

103 Dec 20, 2022
Starter Code for VALUE benchmark

StarterCode for VALUE Benchmark This is the starter code for VALUE Benchmark [website], [paper]. This repository currently supports all baseline model

VALUE Benchmark 73 Dec 09, 2022
The reference baseline of final exam for XMU machine learning course

Mini-NICO Baseline The baseline is a reference method for the final exam of machine learning course. Requirements Installation we use /python3.7 /torc

JoaquinChou 3 Dec 29, 2021
Food Drinks and groceries Images Multi Lingual (FooDI-ML) dataset.

Food Drinks and groceries Images Multi Lingual (FooDI-ML) dataset.

41 Jan 04, 2023
The final project of "Applying AI to EHR Data" of "AI for Healthcare" nanodegree - Udacity.

Patient Selection for Diabetes Drug Testing Project Overview EHR data is becoming a key source of real-world evidence (RWE) for the pharmaceutical ind

Omar Laham 1 Jan 14, 2022
Yoga - Yoga asana classifier for python

Yoga Asana Classifier Description Hi welcome to my new deep learning project "Yo

Programminghut 35 Dec 12, 2022
Pre-Training Graph Neural Networks for Cold-Start Users and Items Representation.

Pretrain-Recsys This is our Tensorflow implementation for our WSDM 2021 paper: Bowen Hao, Jing Zhang, Hongzhi Yin, Cuiping Li, Hong Chen. Pre-Training

30 Nov 14, 2022
Multi-label Co-regularization for Semi-supervised Facial Action Unit Recognition (NeurIPS 2019)

MLCR This is the source code for paper Multi-label Co-regularization for Semi-supervised Facial Action Unit Recognition. Xuesong Niu, Hu Han, Shiguang

Edson-Niu 60 Nov 29, 2022
Wav2Vec for speech recognition, classification, and audio classification

Soxan در زبان پارسی به نام سخن This repository consists of models, scripts, and notebooks that help you to use all the benefits of Wav2Vec 2.0 in your

Mehrdad Farahani 140 Dec 15, 2022
[CVPR 2021] Generative Hierarchical Features from Synthesizing Images

[CVPR 2021] Generative Hierarchical Features from Synthesizing Images

GenForce: May Generative Force Be with You 148 Dec 09, 2022
Understanding Hyperdimensional Computing for Parallel Single-Pass Learning

Understanding Hyperdimensional Computing for Parallel Single-Pass Learning Authors: Tao Yu* Yichi Zhang* Zhiru Zhang Christopher De Sa *: Equal Contri

Cornell RelaxML 4 Sep 08, 2022
Codes to pre-train T5 (Text-to-Text Transfer Transformer) models pre-trained on Japanese web texts

t5-japanese Codes to pre-train T5 (Text-to-Text Transfer Transformer) models pre-trained on Japanese web texts. The following is a list of models that

Kimio Kuramitsu 1 Dec 13, 2021
[ICLR 2022] Contact Points Discovery for Soft-Body Manipulations with Differentiable Physics

CPDeform Code and data for paper Contact Points Discovery for Soft-Body Manipulations with Differentiable Physics at ICLR 2022 (Spotlight). @InProceed

(Lester) Sizhe Li 29 Nov 29, 2022