This is an implementation of PIFuhd based on Pytorch

Overview

Open-PIFuhd

This is a unofficial implementation of PIFuhd

PIFuHD: Multi-Level Pixel-Aligned Implicit Function forHigh-Resolution 3D Human Digitization(CVPR2020)

Implementation

  • Training Coarse PIFuhd
  • Training Fine PIFuhd
  • Inference
  • metrics(P2S, Normal, Chamfer)
  • Gan generates front normal and back normal (Under designing)

Note that the pipeline I design do not consider normal map generated by pix2pixHD because it is Not main difficulty we reimplement PIFuhd. By the way, I will release GAN +PIFuhd soon.

Prerequisites

  • PyTorch>=1.6
  • json
  • PIL
  • skimage
  • tqdm
  • cv2
  • trimesh with pyembree
  • pyexr
  • PyOpenGL
  • freeglut (use sudo apt-get install freeglut3-dev for ubuntu users)
  • (optional) egl related packages for rendering with headless machines. (use apt install libgl1-mesa-dri libegl1-mesa libgbm1 for ubuntu users)
  • face3d

Data processed

We use Render People as our datasets but the data size is 296 (270 for training while 29 for testing) which is less than paper said 500.

Note that we are unable to release the full training data due to the restriction of commertial scans.

Initial data

I modified part codes in PIFu (branch: PIFu-modify, and download it into your project) in order to could process dirs where your model save

bash ./scripts/process_obj.sh [--dir_models_path]
#e.g.  bash ./scripts/process_obj.sh ../Garment/render_people_train/

Rendering data

I modified part codes in PIFu in order to could process dirs where your model save

python -m apps.render_data -i [--dir_models_path] -o [--save_processed_models_path] -s 1024 [Optional: -e]
#-e means use GPU rendering
#e.g.python -m apps.render_data -i ../Garment/render_people_train/ -o ../Garment/render_gen_1024_train/ -s 1024 -e

Render Normal Map

Rendering front and back normal map In Current Project

All config params is set in ./configs/PIFuhd_Render_People_HG_coarse.py, bash ./scripts/generate.sh

# the params you could modify from ./configs/PIFuhd_Render_People_HG_normal_map.py
# the import params here is 
#  e.g. input_dir = '../Garment/render_gen_1024_train/' and cache= "../Garment/cache/render_gen_1024/rp_train/"
# inpud_dir means output render_gen_1024_train
# cache means where save intermediate results like sample points from mesh

After processing all datasets, Tree-Structured Directory looks like following:

render_gen_1024_train/
├── rp_aaron_posed_004_BLD
│   ├── GEO
│   ├── MASK
│   ├── PARAM
│   ├── RENDER
│   ├── RENDER_NORMAL
│   ├── UV_MASK
│   ├── UV_NORMAL
│   ├── UV_POS
│   ├── UV_RENDER
│   └── val.txt
├── rp_aaron_posed_005_BLD
	....

Training

Training coarse-pifuhd

All config params is set in ./configs/PIFuhd_Render_People_HG_coarse.py, Where you could modify all you want.

Note that this project I designed is friend, which means you could easily replace origin backbone, head by yours :)

bash ./scripts/train_pfhd_coarse.sh

Training Fine-PIFuhd

the same as coarse PIFuhd, all config params is set in ./configs/PIFuhd_Render_People_HG_fine.py,

bash ./scripts/train_pfhd_fine.sh

**If you meet memory problems about GPUs, pls reduce batch_size in ./config/*.py **

Inference

bash ./scripts/test_pfhd_coarse.sh
#or 
bash ./scripts/test_pfhd_fine.sh

the results will be saved into checkpoints/PIFuhd_Render_People_HG_[coarse/fine]/gallery/test/model_name/*.obj, then you could use meshlab to view the generate models.

Metrics

export MESA_GL_VERSION_OVERRIDE=3.3 
# eval coarse-pifuhd
python ./tools/eval_pifu.py  --config ./configs/PIFuhd_Render_People_HG_coarse.py
# eval fine-pifuhd
python ./tools/eval_pifu.py  --config ./configs/PIFuhd_Render_People_HG_fine.py

Demo

we provide rendering code using free models in RenderPeople. This tutorial uses rp_dennis_posed_004 model. Please download the model from this link and unzip the content. Use following command to reconstruct the model:


Debug

I provide bool params(debug in all of config files) to you to check whether your points sampled from mesh is right. There are examples:

Visualization

As following show, left is input image, mid is the results of coarse-pifuhd, right is fine-pifuhd

Reconstruction on Render People Datasets

Note that our training datasets are less than official one(270 for our while 450 for paper) resulting in the performance changes in some degree

IoU ACC recall P2S Normal Chamfer
PIFu 0.748 0.880 0.856 1.801 0.1446 2.00
Coarse-PIFuhd(+Front and back normal) 0.865(5cm) 0.931(5cm) 0.923(5cm) 1.242 0.1205 1.4015
Fine-PIFuhd(+Front and back normal) 0.813(3cm) 0.896(3cm) 0.904(5cm) - 0.1138 -

There is an issue why p2s of fine-pifuhd is bit large than coarse-pifuhd. This is because I do not add some post-processing to clean some chaos in reconstruction. However, the details of human mesh produced by fine-pifuhd are obviously better than coarse-pifuhd.

About Me

I hope that this project could provide some contributions to our communities, especially for implicit-field.

By the way, If you think the project is helpful to you, pls don’t forget to star this project : )

Related Research

Monocular Real-Time Volumetric Performance Capture (ECCV 2020) Ruilong Li*, Yuliang Xiu*, Shunsuke Saito, Zeng Huang, Kyle Olszewski, Hao Li

PIFuHD: Multi-Level Pixel-Aligned Implicit Function for High-Resolution 3D Human Digitization (CVPR 2020) Shunsuke Saito, Tomas Simon, Jason Saragih, Hanbyul Joo

ARCH: Animatable Reconstruction of Clothed Humans (CVPR 2020) Zeng Huang, Yuanlu Xu, Christoph Lassner, Hao Li, Tony Tung

Robust 3D Self-portraits in Seconds (CVPR 2020) Zhe Li, Tao Yu, Chuanyu Pan, Zerong Zheng, Yebin Liu

Learning to Infer Implicit Surfaces without 3d Supervision (NeurIPS 2019) Shichen Liu, Shunsuke Saito, Weikai Chen, Hao Li

Owner
Lingteng Qiu
good good study, day day up
Lingteng Qiu
GPU Programming with Julia - course at the Swiss National Supercomputing Centre (CSCS), ETH Zurich

Course Description The programming language Julia is being more and more adopted in High Performance Computing (HPC) due to its unique way to combine

Samuel Omlin 192 Jan 03, 2023
Using Python to Play Cyberpunk 2077

CyberPython 2077 Using Python to Play Cyberpunk 2077 This repo will contain code from the Cyberpython 2077 video series on Youtube (youtube.

Harrison 118 Oct 18, 2022
[CVPR 2021] A Peek Into the Reasoning of Neural Networks: Interpreting with Structural Visual Concepts

Visual-Reasoning-eXplanation [CVPR 2021 A Peek Into the Reasoning of Neural Networks: Interpreting with Structural Visual Concepts] Project Page | Vid

Andy_Ge 54 Dec 21, 2022
Automatic packaging of the open-composite libs for OvGME

OvGME Packager for OpenXR – OpenComposite for DCS Note This repository is currently unsupported and needs to be migrated to the upstream OpenComposite

12 Nov 03, 2022
A data-driven maritime port simulator

PySeidon - A Data-Driven Maritime Port Simulator 🌊 Extendable and modular software for maritime port simulation. This software uses entity-component

6 Apr 10, 2022
PyTorch code for: Learning to Generate Grounded Visual Captions without Localization Supervision

Learning to Generate Grounded Visual Captions without Localization Supervision This is the PyTorch implementation of our paper: Learning to Generate G

Chih-Yao Ma 41 Nov 17, 2022
Code for "Learning to Segment Rigid Motions from Two Frames".

rigidmask Code for "Learning to Segment Rigid Motions from Two Frames". ** This is a partial release with inference and evaluation code.

Gengshan Yang 157 Nov 21, 2022
Exploring Image Deblurring via Blur Kernel Space (CVPR'21)

Exploring Image Deblurring via Encoded Blur Kernel Space About the project We introduce a method to encode the blur operators of an arbitrary dataset

VinAI Research 118 Dec 19, 2022
How Do Adam and Training Strategies Help BNNs Optimization? In ICML 2021.

AdamBNN This is the pytorch implementation of our paper "How Do Adam and Training Strategies Help BNNs Optimization?", published in ICML 2021. In this

Zechun Liu 47 Sep 20, 2022
Accelerated deep learning R&D

Accelerated deep learning R&D PyTorch framework for Deep Learning research and development. It focuses on reproducibility, rapid experimentation, and

Catalyst-Team 3.1k Jan 06, 2023
PyTorch implementation of "MLP-Mixer: An all-MLP Architecture for Vision" Tolstikhin et al. (2021)

mlp-mixer-pytorch PyTorch implementation of "MLP-Mixer: An all-MLP Architecture for Vision" Tolstikhin et al. (2021) Usage import torch from mlp_mixer

isaac 27 Jul 09, 2022
Improving Transferability of Representations via Augmentation-Aware Self-Supervision

Improving Transferability of Representations via Augmentation-Aware Self-Supervision Accepted to NeurIPS 2021 TL;DR: Learning augmentation-aware infor

hankook 38 Sep 16, 2022
Pytorch implementation of paper "Learning Co-segmentation by Segment Swapping for Retrieval and Discovery"

SegSwap Pytorch implementation of paper "Learning Co-segmentation by Segment Swapping for Retrieval and Discovery" [PDF] [Project page] If our project

xshen 41 Dec 10, 2022
The repo contains the code to train and evaluate a system which extracts relations and explanations from dialogue.

The repo contains the code to train and evaluate a system which extracts relations and explanations from dialogue. How do I cite D-REX? For now, cite

Alon Albalak 6 Mar 31, 2022
DC3: A Learning Method for Optimization with Hard Constraints

DC3: A learning method for optimization with hard constraints This repository is by Priya L. Donti, David Rolnick, and J. Zico Kolter and contains the

CMU Locus Lab 57 Dec 26, 2022
Code for 1st place solution in Sleep AI Challenge SNU Hospital

Sleep AI Challenge SNU Hospital 2021 Code for 1st place solution for Sleep AI Challenge (Note that the code is not fully organized) Refer to the notio

Saewon Yang 13 Jan 03, 2022
A Physics-based Noise Formation Model for Extreme Low-light Raw Denoising (CVPR 2020 Oral & TPAMI 2021)

ELD The implementation of CVPR 2020 (Oral) paper "A Physics-based Noise Formation Model for Extreme Low-light Raw Denoising" and its journal (TPAMI) v

Kaixuan Wei 359 Jan 01, 2023
《K-Adapter: Infusing Knowledge into Pre-Trained Models with Adapters》(2020)

K-Adapter: Infusing Knowledge into Pre-Trained Models with Adapters This repository is the implementation of the paper "K-Adapter: Infusing Knowledge

Microsoft 118 Dec 13, 2022
An open source Python package for plasma science that is under development

PlasmaPy PlasmaPy is an open source, community-developed Python 3.7+ package for plasma science. PlasmaPy intends to be for plasma science what Astrop

PlasmaPy 444 Jan 07, 2023
This is a Pytorch implementation of the paper: Self-Supervised Graph Transformer on Large-Scale Molecular Data.

This is a Pytorch implementation of the paper: Self-Supervised Graph Transformer on Large-Scale Molecular Data.

212 Dec 25, 2022